These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 31163309)
61. Pore-scale observation of microsphere deposition at grain-to-grain contacts over assemblage-scale porous media domains using X-ray microtomography. Li X; Lin CL; Miller JD; Johnson WP Environ Sci Technol; 2006 Jun; 40(12):3762-8. PubMed ID: 16830539 [TBL] [Abstract][Full Text] [Related]
62. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media. Cai L; Tong M; Ma H; Kim H Environ Sci Technol; 2013 Jun; 47(11):5703-10. PubMed ID: 23662648 [TBL] [Abstract][Full Text] [Related]
63. Transport of surface-modified multi-walled carbon nanotubes in saturated porous media. Tan M; Liu L; Li D; Li C Environ Sci Pollut Res Int; 2021 Jun; 28(23):29900-29907. PubMed ID: 33575939 [TBL] [Abstract][Full Text] [Related]
64. Cotransport of biochar and Shewanella oneidensis MR-1 in saturated porous media: Impacts of electrostatic interaction, extracellular electron transfer and microbial taxis. Liu L; Liu G; Zhou J; Wang J; Jin R Sci Total Environ; 2019 Mar; 658():95-104. PubMed ID: 30572219 [TBL] [Abstract][Full Text] [Related]
65. Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media. Lv X; Gao B; Sun Y; Dong S; Wu J; Jiang B; Shi X Sci Total Environ; 2016 Sep; 563-564():987-95. PubMed ID: 26774131 [TBL] [Abstract][Full Text] [Related]
66. Cotransport and Deposition of Iron Oxides with Different-Sized Plastic Particles in Saturated Quartz Sand. Li M; He L; Zhang M; Liu X; Tong M; Kim H Environ Sci Technol; 2019 Apr; 53(7):3547-3557. PubMed ID: 30859829 [TBL] [Abstract][Full Text] [Related]
67. Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media. Lyu X; Liu X; Sun Y; Gao B; Ji R; Wu J; Xue Y Environ Pollut; 2020 Nov; 266(Pt 1):115343. PubMed ID: 32814265 [TBL] [Abstract][Full Text] [Related]
68. Flagella and Their Properties Affect the Transport and Deposition Behaviors of Zhang M; He L; Jin X; Bai F; Tong M; Ni J Environ Sci Technol; 2021 Apr; 55(8):4964-4973. PubMed ID: 33770437 [TBL] [Abstract][Full Text] [Related]
69. Energy Taxis toward Redox-Active Surfaces Decreases the Transport of Electroactive Bacteria in Saturated Porous Media. Liu L; Liu G; Zhou J; Jin R Environ Sci Technol; 2021 Apr; 55(8):5559-5568. PubMed ID: 33728915 [TBL] [Abstract][Full Text] [Related]
70. Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter. Adrian YF; Schneidewind U; Bradford SA; Šimůnek J; Klumpp E; Azzam R Environ Pollut; 2019 Dec; 255(Pt 1):113124. PubMed ID: 31622956 [TBL] [Abstract][Full Text] [Related]
71. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. Torkzaban S; Bradford SA; van Genuchten MT; Walker SL J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262 [TBL] [Abstract][Full Text] [Related]
72. Why Variant Colloid Transport Behaviors Emerge among Identical Individuals in Porous Media When Colloid-Surface Repulsion Exists. Johnson WP; Rasmuson A; Pazmiño E; Hilpert M Environ Sci Technol; 2018 Jul; 52(13):7230-7239. PubMed ID: 29888906 [TBL] [Abstract][Full Text] [Related]
73. Importance of Al/Fe oxyhydroxide coating and ionic strength in perfluorooctanoic acid (PFOA) transport in saturated porous media. Lyu X; Liu X; Wu X; Sun Y; Gao B; Wu J Water Res; 2020 May; 175():115685. PubMed ID: 32172055 [TBL] [Abstract][Full Text] [Related]
74. Influence of titanium dioxide nanoparticles on the transport and deposition of microplastics in quartz sand. Cai L; He L; Peng S; Li M; Tong M Environ Pollut; 2019 Oct; 253():351-357. PubMed ID: 31325879 [TBL] [Abstract][Full Text] [Related]
75. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. Chen H; Gao B; Li H; Ma LQ J Contam Hydrol; 2011 Sep; 126(1-2):29-36. PubMed ID: 21775014 [TBL] [Abstract][Full Text] [Related]
76. Modeling the Transport of the "New-Horizon" Reduced Graphene Oxide-Metal Oxide Nanohybrids in Water-Saturated Porous Media. Wang D; Jin Y; Park CM; Heo J; Bai X; Aich N; Su C Environ Sci Technol; 2018 Apr; 52(8):4610-4622. PubMed ID: 29582656 [TBL] [Abstract][Full Text] [Related]
77. Transport and retention of graphene oxide nanoparticles in sandy and carbonaceous aquifer sediments: Effect of physicochemical factors and natural biofilm. Ramazanpour Esfahani A; Batelaan O; Hutson JL; Fallowfield HJ J Environ Manage; 2021 Jan; 278(Pt 1):111419. PubMed ID: 33126193 [TBL] [Abstract][Full Text] [Related]
78. Influence of residual polymer on nanoparticle deposition in porous media. Wang Y; Becker MD; Colvin VL; Abriola LM; Pennell KD Environ Sci Technol; 2014 Sep; 48(18):10664-71. PubMed ID: 25133851 [TBL] [Abstract][Full Text] [Related]
79. High mobility of SDBS-dispersed single-walled carbon nanotubes in saturated and unsaturated porous media. Tian Y; Gao B; Ziegler KJ J Hazard Mater; 2011 Feb; 186(2-3):1766-72. PubMed ID: 21236566 [TBL] [Abstract][Full Text] [Related]
80. Transport and retention of microplastics in saturated porous media with peanut shell biochar (PSB) and MgO-PSB amendment: Co-effects of cations and humic acid. Wang X; Dan Y; Diao Y; Liu F; Wang H; Sang W Environ Pollut; 2022 Jul; 305():119307. PubMed ID: 35452753 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]