These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31163393)

  • 1. Analytical approach to the reaction cross section of the fusion of protons with boron isotopes aimed at cancer therapy.
    Geser FA; Valente M
    Appl Radiat Isot; 2019 Sep; 151():96-101. PubMed ID: 31163393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a monte carlo study.
    Jung JY; Yoon DK; Barraclough B; Lee HC; Suh TS; Lu B
    Oncotarget; 2017 Jun; 8(24):39774-39781. PubMed ID: 28427153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerator driven neutron source design via beryllium target and
    Khorshidi A
    J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of the feasibility of gadolinium for neutron capture synovectomy.
    Gierga DP; Yanch JC; Shefer RE
    Med Phys; 2000 Jul; 27(7):1685-92. PubMed ID: 10947274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons.
    Safavi-Naeini M; Chacon A; Guatelli S; Franklin DR; Bambery K; Gregoire MC; Rosenfeld A
    Sci Rep; 2018 Nov; 8(1):16257. PubMed ID: 30390002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis on the emission and potential application of Cherenkov radiation in boron neutron capture therapy: A Monte Carlo simulation study.
    Shu DY; Geng CR; Tang XB; Gong CH; Shao WC; Ai Y
    Appl Radiat Isot; 2018 Jul; 137():219-224. PubMed ID: 29655128
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Hideghéty K; Brunner S; Cheesman A; Szabó ER; Polanek R; Margarone D; Tőkés T; Mogyorósi K
    Anticancer Res; 2019 May; 39(5):2265-2276. PubMed ID: 31092418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of moderator thickness for an accelerator-based neutron irradiation facility for boron neutron capture therapy using the 7Li(p,n) reaction near threshold.
    Zimin S; Allen BJ
    Phys Med Biol; 2000 Jan; 45(1):59-67. PubMed ID: 10661583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.
    Winkler A; Koivunoro H; Savolainen S
    Appl Radiat Isot; 2017 Jun; 124():114-118. PubMed ID: 28365526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of neutron radiation dose by the addition of sulphur-33 atoms.
    Porras I
    Phys Med Biol; 2008 Apr; 53(7):L1-9. PubMed ID: 18356577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the effectiveness of proton boron fusion therapy (PBFT) at cellular level.
    Shahmohammadi Beni M; Islam MR; Kim KM; Krstic D; Nikezic D; Yu KN; Watabe H
    Sci Rep; 2022 Oct; 12(1):18098. PubMed ID: 36302927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a final design for the Birmingham boron neutron capture therapy neutron beam.
    Allen DA; Beynon TD; Green S; James ND
    Med Phys; 1999 Jan; 26(1):77-82. PubMed ID: 9949401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T2 corrected quantification method of L-p-boronophenylalanine using proton magnetic resonance spectroscopy for boron neutron capture therapy.
    Yamamoto Y; Isobe T; Yamamoto T; Shibata Y; Anno I; Nakai K; Shirakawa M; Matsushita A; Sato E; Matsumura A
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S345-7. PubMed ID: 19406648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1H and 10B NMR and MRI investigation of boron- and gadolinium-boron compounds in boron neutron capture therapy.
    Bonora M; Corti M; Borsa F; Bortolussi S; Protti N; Santoro D; Stella S; Altieri S; Zonta C; Clerici AM; Cansolino L; Ferrari C; Dionigi P; Porta A; Zanoni G; Vidari G
    Appl Radiat Isot; 2011 Dec; 69(12):1702-5. PubMed ID: 21371896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness.
    Cirrone GAP; Manti L; Margarone D; Petringa G; Giuffrida L; Minopoli A; Picciotto A; Russo G; Cammarata F; Pisciotta P; Perozziello FM; Romano F; Marchese V; Milluzzo G; Scuderi V; Cuttone G; Korn G
    Sci Rep; 2018 Jan; 8(1):1141. PubMed ID: 29348437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.
    Gierga DP; Yanch JC; Shefer RE
    Med Phys; 2000 Jan; 27(1):203-14. PubMed ID: 10659758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design.
    Lee PY; Liu YH; Jiang SH
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental investigation at CATANA facility of n-
    Mazzucconi D; Bortot D; Pola A; Fazzi A; Cazzola L; Conte V; Cirrone GAP; Petringa G; Cuttone G; Manti L; Agosteo S
    Phys Med; 2021 Sep; 89():226-231. PubMed ID: 34425513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward prompt gamma spectrometry for monitoring boron distributions during extra corporal treatment of liver metastases by boron neutron capture therapy: a Monte Carlo simulation study.
    Khelifi R; Nievaart VA; Bode P; Moss RL; Krijger GC
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S359-61. PubMed ID: 19394243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.