These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31163653)

  • 21. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate.
    Huang G; Takeuchi Y; Ma W; Wei D
    Bull Math Biol; 2010 Jul; 72(5):1192-207. PubMed ID: 20091354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mathematical Analysis and Clinical Implications of an HIV Model with Adaptive Immunity.
    Danane J; Allali K
    Comput Math Methods Med; 2019; 2019():7673212. PubMed ID: 31827588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global stability of multi-group viral models with general incidence functions.
    Fan D; Hao P; Sun D
    J Math Biol; 2018 Apr; 76(5):1301-1326. PubMed ID: 28889316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of an HIV infection model incorporating latency age and infection age.
    Wang J; Dong X
    Math Biosci Eng; 2018 Jun; 15(3):569-594. PubMed ID: 30380321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of HIV models with two time delays.
    Alshorman A; Wang X; Joseph Meyer M; Rong L
    J Biol Dyn; 2017 Mar; 11(sup1):40-64. PubMed ID: 26889761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays.
    Wang J; Qin CY; Chen YM; Wang X
    Math Biosci Eng; 2019 Mar; 16(4):2587-2612. PubMed ID: 31137229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses.
    Jiang C; Wang K; Song L
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1233-1246. PubMed ID: 29161858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A time-delayed SVEIR model for imperfect vaccine with a generalized nonmonotone incidence and application to measles.
    Al-Darabsah I
    Appl Math Model; 2021 Mar; 91():74-92. PubMed ID: 33020678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions.
    Yang Y; Zou L; Ruan S
    Math Biosci; 2015 Dec; 270(Pt B):183-91. PubMed ID: 25998145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global Dynamics of an Avian Influenza A(H7N9) Epidemic Model with Latent Period and Nonlinear Recovery Rate.
    Mu R; Yang Y
    Comput Math Methods Med; 2018; 2018():7321694. PubMed ID: 29681998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyroptosis, superinfection, and the maintenance of the latent reservoir in HIV-1 infection.
    Wodarz D; Levy DN
    Sci Rep; 2017 Jun; 7(1):3834. PubMed ID: 28630490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immune response in virus model structured by cell infection-age.
    Browne C
    Math Biosci Eng; 2016 Oct; 13(5):887-909. PubMed ID: 27775389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An age-structured vector-borne disease model with horizontal transmission in the host.
    Wang X; Chen Y
    Math Biosci Eng; 2018 Oct; 15(5):1099-1116. PubMed ID: 30380301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Notwithstanding Circumstantial Alibis, Cytotoxic T Cells Can Be Major Killers of HIV-1-Infected Cells.
    Gadhamsetty S; Coorens T; de Boer RJ
    J Virol; 2016 Aug; 90(16):7066-7083. PubMed ID: 27226367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Classification of different Hepatitis B infected individuals with saturated incidence rate.
    Khan T; Zaman G
    Springerplus; 2016; 5(1):1082. PubMed ID: 27468382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global dynamics of an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination.
    Lin J; Xu R; Tian X
    J Biol Dyn; 2019 Dec; 13(1):69-102. PubMed ID: 30696390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the global stability of an epidemic model of computer viruses.
    Parsaei MR; Javidan R; Shayegh Kargar N; Saberi Nik H
    Theory Biosci; 2017 Dec; 136(3-4):169-178. PubMed ID: 28776127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global stability properties of a class of renewal epidemic models.
    Meehan MT; Cocks DG; Müller J; McBryde ES
    J Math Biol; 2019 May; 78(6):1713-1725. PubMed ID: 30737545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global stability of COVID-19 model involving the quarantine strategy and media coverage effects.
    A Mohsen A; Al-Husseiny HF; Zhou X; Hattaf K
    AIMS Public Health; 2020; 7(3):587-605. PubMed ID: 32968680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global dynamics of a tuberculosis model with fast and slow progression and age-dependent latency and infection.
    Xu R; Yang J; Tian X; Lin J
    J Biol Dyn; 2019 Dec; 13(1):675-705. PubMed ID: 31672099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.