These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 31163705)
1. The Influence of Graft Length and Density on Dispersion, Crystallisation and Rheology of Poly(ε-caprolactone)/Silica Nanocomposites. Eriksson M; Hamers J; Peijs T; Goossens H Molecules; 2019 Jun; 24(11):. PubMed ID: 31163705 [TBL] [Abstract][Full Text] [Related]
2. n-Hydroxyapatite/PCL-Pluronic-PCL Nanocomposites for Tissue Engineering. Part 2: Thermal and Tensile Study. Fu S; Guo G; Wang X; Zhou L; Gong C; Luo F; Zhao X; Wei Y; Qian Z J Biomater Sci Polym Ed; 2011; 22(1-3):239-51. PubMed ID: 20557698 [TBL] [Abstract][Full Text] [Related]
3. Ibuprofen-loaded poly(epsilon-caprolactone) layered silicate nanocomposites prepared by hot melt extrusion. Campbell KT; Craig DQ; McNally T J Mater Sci Mater Med; 2010 Aug; 21(8):2307-16. PubMed ID: 20033261 [TBL] [Abstract][Full Text] [Related]
4. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation. Cai L; Guinn AS; Wang S Acta Biomater; 2011 May; 7(5):2185-99. PubMed ID: 21284960 [TBL] [Abstract][Full Text] [Related]
5. Rheological behavior of poly(lactic acid)/synthetic mica nanocomposites. Souza DH; Andrade CT; Dias ML Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1795-9. PubMed ID: 23827638 [TBL] [Abstract][Full Text] [Related]
6. Prediction of the structure and mechanical properties of polycaprolactone-silica nanocomposites and the interphase region by molecular dynamics simulations: the effect of PEGylation. Ezquerro CS; Aznar JMG; Laspalas M Soft Matter; 2022 Apr; 18(14):2800-2813. PubMed ID: 35319045 [TBL] [Abstract][Full Text] [Related]
7. Τhe effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid. Georgiopoulos P; Kontou E; Meristoudi A; Pispas S; Chatzinikolaidou M J Biomater Appl; 2014 Nov; 29(5):662-74. PubMed ID: 25091863 [TBL] [Abstract][Full Text] [Related]
8. Amino-Functionalized Multiwalled Carbon Nanotubes Lead to Successful Ring-Opening Polymerization of Poly(ε-caprolactone): Enhanced Interfacial Bonding and Optimized Mechanical Properties. Roumeli E; Papageorgiou DG; Tsanaktsis V; Terzopoulou Z; Chrissafis K; Avgeropoulos A; Bikiaris DN ACS Appl Mater Interfaces; 2015 Jun; 7(21):11683-94. PubMed ID: 25950403 [TBL] [Abstract][Full Text] [Related]
9. Functional Nanocomposite Films of Poly(Lactic Acid) with Well-Dispersed Chitin Nanocrystals Achieved Using a Dispersing Agent and Liquid-Assisted Extrusion Process. Patel M; Schwendemann D; Spigno G; Geng S; Berglund L; Oksman K Molecules; 2021 Jul; 26(15):. PubMed ID: 34361717 [TBL] [Abstract][Full Text] [Related]
10. Development and performance analysis of PCL/silica nanocomposites for bone regeneration. Calandrelli L; Annunziata M; Della Ragione F; Laurienzo P; Malinconico M; Oliva A J Mater Sci Mater Med; 2010 Nov; 21(11):2923-36. PubMed ID: 20976531 [TBL] [Abstract][Full Text] [Related]
11. Effects of molecular weight and crystallizability of polylactide on the cellulose nanocrystal dispersion quality in their nanocomposites. Vatansever E; Arslan D; Sarul DS; Kahraman Y; Nofar M Int J Biol Macromol; 2020 Jul; 154():276-290. PubMed ID: 32184137 [TBL] [Abstract][Full Text] [Related]
12. Dispersion morphology and correlation to moduli using buckling metrology in clay-biopolymer nanocomposite thin films. Yuan H; Singh G; Raghavan D; Al-Enizi AM; Elzatahry A; Karim A ACS Appl Mater Interfaces; 2014 Aug; 6(16):13378-88. PubMed ID: 25062299 [TBL] [Abstract][Full Text] [Related]
13. Performance and multi-scale investigation on the phase miscibility of poly(lactic acid)/amided silica nanocomposites. Luo D; Zhen W; Dong C; Zhao L Int J Biol Macromol; 2021 Apr; 177():271-283. PubMed ID: 33621566 [TBL] [Abstract][Full Text] [Related]
14. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
16. Effect of molecular weight of poly(epsilon-caprolactone) on interpenetrating network structure, apatite-forming ability, and degradability of poly(epsilon-caprolactone)/silica nano-hybrid materials. Rhee SH Biomaterials; 2003 May; 24(10):1721-7. PubMed ID: 12593953 [TBL] [Abstract][Full Text] [Related]
17. Extraordinary reinforcement effect of three-dimensionally nanoporous cellulose gels in poly(ε-caprolactone) bionanocomposites. Li K; Song J; Xu M; Kuga S; Zhang L; Cai J ACS Appl Mater Interfaces; 2014 May; 6(10):7204-13. PubMed ID: 24779576 [TBL] [Abstract][Full Text] [Related]
18. Nucleation roles of cellulose nanocrystals and chitin nanocrystals in poly(ε-caprolactone) nanocomposites. Li J; Wu D Int J Biol Macromol; 2022 Apr; 205():587-594. PubMed ID: 35218803 [TBL] [Abstract][Full Text] [Related]
19. Effect of loadings of nanocellulose on the significantly improved crystallization and mechanical properties of biodegradable poly(ε-caprolactone). Li Y; Han C; Yu Y; Xiao L Int J Biol Macromol; 2020 Mar; 147():34-45. PubMed ID: 31923509 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites--influence of the graft length on the mechanical properties. Lönnberg H; Larsson K; Lindström T; Hult A; Malmström E ACS Appl Mater Interfaces; 2011 May; 3(5):1426-33. PubMed ID: 21473594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]