BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31163709)

  • 1.
    Berner D; Roesti M; Bilobram S; Chan SK; Kirk H; Pandoh P; Taylor GA; Zhao Y; Jones SJM; DeFaveri J
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31163709
    [No Abstract]   [Full Text] [Related]  

  • 2. Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.
    Peichel CL; Sullivan ST; Liachko I; White MA
    J Hered; 2017 Sep; 108(6):693-700. PubMed ID: 28821183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved contiguity of the threespine stickleback genome using long-read sequencing.
    Nath S; Shaw DE; White MA
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33598708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags.
    Hohenlohe PA; Bassham S; Etter PD; Stiffler N; Johnson EA; Cresko WA
    PLoS Genet; 2010 Feb; 6(2):e1000862. PubMed ID: 20195501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A linked-read approach to museomics: Higher quality de novo genome assemblies from degraded tissues.
    Colella JP; Tigano A; MacManes MD
    Mol Ecol Resour; 2020 Jul; 20(4):856-870. PubMed ID: 32153100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Threespine Stickleback: A Model System For Evolutionary Genomics.
    Reid K; Bell MA; Veeramah KR
    Annu Rev Genomics Hum Genet; 2021 Aug; 22():357-383. PubMed ID: 33909459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local de novo assembly of RAD paired-end contigs using short sequencing reads.
    Etter PD; Preston JL; Bassham S; Cresko WA; Johnson EA
    PLoS One; 2011 Apr; 6(4):e18561. PubMed ID: 21541009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-read RNA sequencing reveals widespread sex-specific alternative splicing in threespine stickleback fish.
    Naftaly AS; Pau S; White MA
    Genome Res; 2021 Aug; 31(8):1486-1497. PubMed ID: 34131005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell Iso-Sequencing enables rapid genome annotation for scRNAseq analysis.
    Healey HM; Bassham S; Cresko WA
    Genetics; 2022 Mar; 220(3):. PubMed ID: 35143654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes.
    Bratcher HB; Corton C; Jolley KA; Parkhill J; Maiden MC
    BMC Genomics; 2014 Dec; 15(1):1138. PubMed ID: 25523208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widespread intersex differentiation across the stickleback genome - The signature of sexually antagonistic selection?
    Bissegger M; Laurentino TG; Roesti M; Berner D
    Mol Ecol; 2020 Jan; 29(2):262-271. PubMed ID: 31574563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The population structure and recent colonization history of Oregon threespine stickleback determined using restriction-site associated DNA-sequencing.
    Catchen J; Bassham S; Wilson T; Currey M; O'Brien C; Yeates Q; Cresko WA
    Mol Ecol; 2013 Jun; 22(11):2864-83. PubMed ID: 23718143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution and assessment of colour patterns in stream-resident and anadromous male threespine stickleback Gasterosteus aculeatus from three regions.
    Stuckert AMM; Drury S; Anderson CM; Bowling TBT; Mckinnon JS
    J Fish Biol; 2019 Mar; 94(3):520-525. PubMed ID: 30693501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Single Interacting Species Leads to Widespread Parallel Evolution of the Stickleback Genome.
    Miller SE; Roesti M; Schluter D
    Curr Biol; 2019 Feb; 29(3):530-537.e6. PubMed ID: 30686736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated improvement of stickleback reference genome assemblies with Lep-Anchor software.
    Kivikoski M; Rastas P; Löytynoja A; Merilä J
    Mol Ecol Resour; 2021 Aug; 21(6):2166-2176. PubMed ID: 33955177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversification and adaptive evolution of putative sweet taste receptors in threespine stickleback.
    Hashiguchi Y; Furuta Y; Kawahara R; Nishida M
    Gene; 2007 Jul; 396(1):170-9. PubMed ID: 17467198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback.
    Morris MRJ; Bowles E; Allen BE; Jamniczky HA; Rogers SM
    BMC Evol Biol; 2018 Jul; 18(1):113. PubMed ID: 30021523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Assembly Improvement and Mapping Convergently Evolved Skeletal Traits in Sticklebacks with Genotyping-by-Sequencing.
    Glazer AM; Killingbeck EE; Mitros T; Rokhsar DS; Miller CT
    G3 (Bethesda); 2015 Jun; 5(7):1463-72. PubMed ID: 26044731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of 954 bovine full-CDS cDNA sequences.
    Harhay GP; Sonstegard TS; Keele JW; Heaton MP; Clawson ML; Snelling WM; Wiedmann RT; Van Tassell CP; Smith TP
    BMC Genomics; 2005 Nov; 6():166. PubMed ID: 16305752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution.
    Peichel CL; McCann SR; Ross JA; Naftaly AFS; Urton JR; Cech JN; Grimwood J; Schmutz J; Myers RM; Kingsley DM; White MA
    Genome Biol; 2020 Jul; 21(1):177. PubMed ID: 32684159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.