These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31163710)

  • 1. Electronic Property and Negative Thermal Expansion Behavior of Si
    Xue D; Myles CW
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31163710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-Principles Analysis of Vibrational Properties of Type II SiGe Alloy Clathrates.
    Xue D; Myles CW
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31083355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative thermal expansion in 2H CuScO
    Chang D; Yu W; Sun Q; Jia Y
    Phys Chem Chem Phys; 2017 Jan; 19(3):2067-2072. PubMed ID: 28044172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and Thermal Properties of BaTe2O6: Combined Variable-Temperature Synchrotron X-ray Diffraction, Raman Spectroscopy, and ab Initio Calculations.
    Mishra KK; Achary SN; Chandra S; Ravindran TR; Sinha AK; Singh MN; Tyagi AK
    Inorg Chem; 2016 Sep; 55(17):8994-9005. PubMed ID: 27494416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermomechanical properties of zero thermal expansion materials from theory and experiments.
    Erlebach A; Thieme C; Müller C; Hoffmann S; Höche T; Rüssel C; Sierka M
    Phys Chem Chem Phys; 2020 Sep; 22(33):18518-18525. PubMed ID: 32780039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anharmonic Interaction in Negative Thermal Expansion Material CaTiF
    Wang L; Chen Y; Ni J; Ye F; Wang C
    Inorg Chem; 2022 Oct; 61(43):17378-17386. PubMed ID: 36261410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable uniaxial, area, and volume negative thermal expansion in quartz-like and diamond-like metal-organic frameworks.
    Wang L; Chen Y; Miura H; Suzuki K; Wang C
    RSC Adv; 2022 Aug; 12(34):21770-21779. PubMed ID: 36043075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the mechanism of guest-framework bonding interactions through a first-principles study on the structural and electronic properties of type-II clathrate A
    Xue D; Deng Y; Myles CW
    RSC Adv; 2024 Jun; 14(28):20220-20229. PubMed ID: 38919287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Negative Thermal Expansion in Monoclinic Cu
    Mochizuki Y; Nagamatsu K; Koiso H; Isobe T; Nakajima A
    J Phys Chem Lett; 2024 Jan; 15(1):156-164. PubMed ID: 38149933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anharmonic Origin of the Giant Thermal Expansion of NaBr.
    Shen Y; Saunders CN; Bernal CM; Abernathy DL; Manley ME; Fultz B
    Phys Rev Lett; 2020 Aug; 125(8):085504. PubMed ID: 32909782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.
    Beran GJ; Hartman JD; Heit YN
    Acc Chem Res; 2016 Nov; 49(11):2501-2508. PubMed ID: 27754668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure enhanced negative thermal expansion in 2H CuScO
    Chang D; Tang C; Hu Q; Wang C; Jia Y
    Phys Chem Chem Phys; 2022 Jul; 24(27):16622-16627. PubMed ID: 35766117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂.
    Late DJ; Shirodkar SN; Waghmare UV; Dravid VP; Rao CN
    Chemphyschem; 2014 Jun; 15(8):1592-8. PubMed ID: 24692405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inherent Anharmonicity of Harmonic Solids.
    Agne MT; Anand S; Snyder GJ
    Research (Wash D C); 2022; 2022():9786705. PubMed ID: 38617551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative thermal expansion of Cu
    Linnera J; Erba A; Karttunen AJ
    J Chem Phys; 2019 Nov; 151(18):184109. PubMed ID: 31731874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniaxial Negative Thermal Expansion, Negative Linear Compressibility, and Negative Poisson's Ratio Induced by Specific Topology in Zn[Au(CN)
    Wang L; Luo H; Deng S; Sun Y; Wang C
    Inorg Chem; 2017 Dec; 56(24):15101-15109. PubMed ID: 29189011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Structural, Mechanical, and Thermodynamic Calculations of the Negative Thermal Expansion Compound Zr
    Weck PF; Kim E; Gordon ME; Greathouse JA; Dingreville R; Bryan CR
    ACS Omega; 2018 Nov; 3(11):15780-15788. PubMed ID: 31458228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lattice Dynamics Study of Phonon Instability and Thermal Properties of Type-I Clathrate K₈Si
    Zhang W; Zeng ZY; Ge NN; Li ZG
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational and thermodynamic properties of α-, β-, γ-, and 6, 6, 12-graphyne structures.
    Perkgöz NK; Sevik C
    Nanotechnology; 2014 May; 25(18):185701. PubMed ID: 24737253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative thermal expansion emerging upon structural phase transition in ZrV2O7 and HfV2O7.
    Yamamura Y; Horikoshi A; Yasuzuka S; Saitoh H; Saito K
    Dalton Trans; 2011 Mar; 40(10):2242-8. PubMed ID: 21246146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.