These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31163716)

  • 41. Self-focusing collapse distance in ultrashort pulses and measurement of nonlinear index.
    Whalen P; Moloney JV; Kolesik M
    Opt Lett; 2011 Jul; 36(13):2542-4. PubMed ID: 21725473
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere.
    Dan Y; Zhang B
    Opt Express; 2008 Sep; 16(20):15563-75. PubMed ID: 18825195
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Femtosecond nearly resonant self-focusing in gold nanorod colloids.
    Agiotis L; Meunier M
    Opt Express; 2021 Nov; 29(24):39536-39548. PubMed ID: 34809316
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct numerical simulations of capillary wave turbulence.
    Deike L; Fuster D; Berhanu M; Falcon E
    Phys Rev Lett; 2014 Jun; 112(23):234501. PubMed ID: 24972211
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stimulated Raman scattering and nonlinear focusing of high-power laser beams propagating in water.
    Hafizi B; Palastro JP; Peñano JR; Gordon DF; Jones TG; Helle MH; Kaganovich D
    Opt Lett; 2015 Apr; 40(7):1556-8. PubMed ID: 25831383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unified modeling of turbulence effects on sound propagation.
    Cheinet S; Ehrhardt L; Juvé D; Blanc-Benon P
    J Acoust Soc Am; 2012 Oct; 132(4):2198-209. PubMed ID: 23039416
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-focusing effect of annular beams propagating in the atmosphere.
    Zhang Y; Ji X; Li X; Li Q; Yu H
    Opt Express; 2017 Sep; 25(18):21329-21341. PubMed ID: 29041432
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Model experiment to study sonic boom propagation through turbulence. Part II. Effect of turbulence intensity and propagation distance through turbulence.
    Lipkens B; Blackstock DT
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1301-9. PubMed ID: 9745733
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analytical expressions for the log-amplitude correlation function of a plane wave through anisotropic atmospheric refractive turbulence.
    Gudimetla VS; Holmes RB; Smith C; Needham G
    J Opt Soc Am A Opt Image Sci Vis; 2012 May; 29(5):832-41. PubMed ID: 22561942
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transition from linear- to nonlinear-focusing regime in filamentation.
    Lim K; Durand M; Baudelet M; Richardson M
    Sci Rep; 2014 Dec; 4():7217. PubMed ID: 25434678
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence.
    Xu HF; Zhang Z; Qu J; Huang W
    Opt Express; 2014 Sep; 22(19):22479-89. PubMed ID: 25321718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence.
    Yuldashev PV; Ollivier S; Karzova MM; Khokhlova VA; Blanc-Benon P
    J Acoust Soc Am; 2017 Dec; 142(6):3402. PubMed ID: 29289086
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analytical and numerical approaches to study echo laser pulse profile affected by target and atmospheric turbulence.
    Hao Q; Cheng Y; Cao J; Zhang F; Zhang X; Yu H
    Opt Express; 2016 Oct; 24(22):25026-25042. PubMed ID: 27828443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temporal frequency spread of optical waves propagating in anisotropic maritime atmospheric turbulence.
    Guan B; Choi J
    Appl Opt; 2019 Apr; 58(11):2913-2919. PubMed ID: 31044898
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of the filamentation distance and pattern in long-range atmospheric propagation.
    Eisenmann S; Louzon E; Katzir Y; Palchan T; Zigler A; Sivan Y; Fibich G
    Opt Express; 2007 Mar; 15(6):2779-84. PubMed ID: 19532515
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-focusing propagation characteristics of a radially-polarized beam in nonlinear media.
    Lu L; Wang Z; Cai Y
    Opt Express; 2022 May; 30(10):15905-15912. PubMed ID: 36221445
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temporal power spectra of irradiance scintillation for infrared optical waves' propagation through marine atmospheric turbulence.
    Cui L
    J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):2030-7. PubMed ID: 25401443
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Second-order intensity-moment characteristics for broadband partially coherent flat-topped beams in atmospheric turbulence.
    Mao H; Zhao D
    Opt Express; 2010 Jan; 18(2):1741-55. PubMed ID: 20174002
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimal beam focusing through turbulence.
    Charnotskii M
    J Opt Soc Am A Opt Image Sci Vis; 2015 Nov; 32(11):1943-51. PubMed ID: 26560908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Approach to atmospheric laser-propagation theory based on the extended Huygens-Fresnel principle and a self-consistency concept.
    Bochove EJ; Rao Gudimetla VS
    J Opt Soc Am A Opt Image Sci Vis; 2017 Jan; 34(1):140-145. PubMed ID: 28059219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.