These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31163736)

  • 21. Controlled Insertion of Planar Defect in Inverse Opals for Anticounterfeiting Applications.
    Heo Y; Lee SY; Kim JW; Jeon TY; Kim SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43098-43104. PubMed ID: 29165980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rutile TiO2 inverse opal with photonic bandgap in the UV-visible range.
    Li Y; Piret F; Léonard T; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(1):43-8. PubMed ID: 20466381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thick Free-Standing Metallic Inverse Opals Enabled by New Insights into the Fracture of Drying Particle Films.
    Jiang Z; Hsain Z; Pikul JH
    Langmuir; 2020 Jul; 36(26):7315-7324. PubMed ID: 32501700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical properties of nanoparticle-based metallodielectric inverse opals.
    Wang D; Li J; Chan CT; Salgueiriño-Maceira V; Liz-Marzán LM; Romanov S; Caruso F
    Small; 2005 Jan; 1(1):122-30. PubMed ID: 17193362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications.
    Schünemann S; Chen K; Brittman S; Garnett E; Tüysüz H
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25489-95. PubMed ID: 27589559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liquid-impermeable inverse opals with invariant photonic bandgap.
    Kang H; Lee JS; Chang WS; Kim SH
    Adv Mater; 2015 Feb; 27(7):1282-7. PubMed ID: 25492694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Robust Method for the Elaboration of SiO
    Fookes F; Polo Parada L; Fidalgo M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals.
    Lin C; Jiang Y; Tao CA; Yin X; Lan Y; Wang C; Wang S; Liu X; Li G
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11770-11779. PubMed ID: 28293943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Al
    Coll A; Bermejo S; Hernández D; Castañer L
    Beilstein J Nanotechnol; 2018; 9():216-223. PubMed ID: 29441266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transparency induced in opals via nanometer thick conformal coating.
    Shang G; Furlan KP; Zierold R; Blick RH; Janßen R; Petrov A; Eich M
    Sci Rep; 2019 Aug; 9(1):11379. PubMed ID: 31388189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals.
    Bechger L; Lodahl P; Vos WL
    J Phys Chem B; 2005 May; 109(20):9980-8. PubMed ID: 16852206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and upconversion emission modification of Yb, Er co-doped Y2SiO5 inverse opal photonic crystals.
    Yan D; Zhu J; Yang Z; Wu H; Wang R; Qiu J; Song Z; Zhou D; Yang Y; Yin Z
    J Nanosci Nanotechnol; 2014 May; 14(5):3800-3. PubMed ID: 24734639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture.
    Wang A; Liu W; Tang J; Chen SL; Dong P
    Opt Lett; 2014 Apr; 39(8):2386-9. PubMed ID: 24978999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of Humidity-Sensitive Poly(Ethylene Glycol) Inverse Opal Micropatterns Using Colloidal Lithography.
    Yu B; Cong H; Yang Z; Yang S; Wang Y; Zhai F; Wang Y
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28872619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.
    Xing H; Li J; Shi Y; Guo J; Wei J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9440-5. PubMed ID: 26996608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inverse Opal Photonic Crystals as an Optofluidic Platform for Fast Analysis of Hydrocarbon Mixtures.
    Xu Q; Mahpeykar SM; Burgess IB; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20120-20127. PubMed ID: 29763285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Macroporous ordered titanium dioxide (TiO2) inverse opal as a new label-free immunosensor.
    Li J; Zhao X; Wei H; Gu ZZ; Lu Z
    Anal Chim Acta; 2008 Sep; 625(1):63-9. PubMed ID: 18721541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advanced Photocatalysts Based on Reduced Nanographene Oxide-TiO
    Diamantopoulou A; Sakellis E; Gardelis S; Tsoutsou D; Glenis S; Boukos N; Dimoulas A; Likodimos V
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Opal and inverse opal fabricated with a flow-controlled vertical deposition method.
    Zhou Z; Zhao XS
    Langmuir; 2005 May; 21(10):4717-23. PubMed ID: 16032895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sandwich approach toward inverse opals with linear and nonlinear optical functionalities.
    Demeyer PJ; Vandendriessche S; Van Cleuvenbergen S; Carron S; Bogaerts K; Parac-Vogt TN; Verbiest T; Clays K
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3870-8. PubMed ID: 24559215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.