These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31163772)

  • 1. Generalized tensor FDTD method for sloped dispersive interfaces and thin sheets.
    Zhao Q; Sarris CD
    Opt Express; 2019 May; 27(11):15812-15826. PubMed ID: 31163772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate modeling of dielectric interfaces by the effective permittivities for the fourth-order symplectic finite-difference time-domain method.
    Hirono T; Yoshikuni Y
    Appl Opt; 2007 Mar; 46(9):1514-24. PubMed ID: 17334444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersive contour-path finite-difference time-domain algorithm for modeling surface plasmon polaritons at flat interfaces.
    Mohammadi A; Agio M
    Opt Express; 2006 Nov; 14(23):11330-8. PubMed ID: 19529550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discontinuous Galerkin time domain analysis of electromagnetic scattering from dispersive periodic nanostructures at oblique incidence.
    Bao H; Kang L; Campbell SD; Werner DH
    Opt Express; 2019 Apr; 27(9):13116-13128. PubMed ID: 31052841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contour-path effective permittivities for the two-dimensional finite-difference time-domain method.
    Mohammadi A; Nadgaran H; Agio M
    Opt Express; 2005 Dec; 13(25):10367-81. PubMed ID: 19503252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjoint sensitivity analysis of plasmonic structures using the FDTD method.
    Zhang Y; Ahmed OS; Bakr MH
    Opt Lett; 2014 May; 39(10):3002-5. PubMed ID: 24978258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.
    Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L
    Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FDTD scattered field formulation for scatterers in stratified dispersive media.
    Olkkonen J
    Opt Express; 2010 Mar; 18(5):4380-9. PubMed ID: 20389450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Split-field FDTD method for oblique incidence study of periodic dispersive metallic structures.
    Baida FI; Belkhir A
    Opt Lett; 2009 Aug; 34(16):2453-5. PubMed ID: 19684813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time domain characteristics of wave motion in dispersive and anisotropic continuum acoustic metamaterials.
    Wang Z; Zhou X
    J Acoust Soc Am; 2016 Dec; 140(6):4276. PubMed ID: 28039989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light manipulation with flat and conformal inhomogeneous dispersive impedance sheets: an efficient FDTD modeling.
    Jafar-Zanjani S; Cheng J; Mosallaei H
    Appl Opt; 2016 Apr; 55(11):2967-75. PubMed ID: 27139861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation.
    Oh C; Escuti MJ
    Opt Express; 2006 Nov; 14(24):11870-84. PubMed ID: 19529610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical chirality breaking in a bilayered chiral metamaterial.
    Zhao J; Fu Y; Liu Z; Zhou J
    Opt Express; 2017 Sep; 25(19):23051-23059. PubMed ID: 29041609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.
    Zhao S
    Opt Lett; 2011 Aug; 36(16):3245-7. PubMed ID: 21847222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of nanodot plasmonic waveguide structures using FIB milling and electron beam-induced deposition.
    Dhawan A; Gerhold M; Madison A; Fowlkes J; Russell PE; Vo-Dinh T; Leonard DN
    Scanning; 2009; 31(4):139-46. PubMed ID: 19670460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.
    Wang XH; Yin WY; Chen ZZ
    Opt Express; 2013 Sep; 21(18):20565-76. PubMed ID: 24103929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast numerical methods for the design of layered photonic structures with rough interfaces.
    Komarevskiy N; Braginsky L; Shklover V; Hafner C; Lawson J
    Opt Express; 2011 Mar; 19(6):5489-99. PubMed ID: 21445187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topology optimization of dispersive plasmonic nanostructures in the time-domain.
    Hassan E; CalĂ  Lesina A
    Opt Express; 2022 May; 30(11):19557-19572. PubMed ID: 36221729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.
    Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP
    Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.