These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31163781)

  • 1. Optical, mechanical and thermal characterizations of suspended chalcogenide glass microdisk membrane.
    Chen Z; Wan L; Song J; Pan J; Zhu Y; Yang Z; Liu W; Li J; Gao S; Lin YS; Zhang B; Li Z
    Opt Express; 2019 May; 27(11):15918-15925. PubMed ID: 31163781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High quality, high index-contrast chalcogenide microdisk resonators.
    Zhang R; Yang Z; Zhao M; Xu P; Zhang W; Kang Z; Zheng J; Dai S; Wang R; Majumdar A
    Opt Express; 2021 Jun; 29(12):17775-17783. PubMed ID: 34154053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics.
    Zhou T; Zhu Z; Liu X; Liang Z; Wang X
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Chalcogenide Glass Based Hexagonal Gapless Microlens Arrays via Combining Femtosecond Laser Assist Chemical Etching and Precision Glass Molding Processes.
    Zhang F; Yang Q; Bian H; Li M; Hou X; Chen F
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing.
    Hu J; Carlie N; Feng NN; Petit L; Agarwal A; Richardson K; Kimerling L
    Opt Lett; 2008 Nov; 33(21):2500-2. PubMed ID: 18978900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Batch Fabrication of High-Quality Infrared Chalcogenide Microsphere Resonators.
    Xie Y; Cai D; Pan J; Zhou N; Gao Y; Jin Y; Jiang X; Qiu J; Wang P; Guo X; Tong L
    Small; 2021 May; 17(20):e2100140. PubMed ID: 33811462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon carbide double-microdisk resonator.
    Lu X; Lee JY; Rogers SD; Lin Q
    Opt Lett; 2019 Sep; 44(17):4295-4298. PubMed ID: 31465386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy.
    Liu Y; Miao H; Aksyuk V; Srinivasan K
    Opt Express; 2012 Jul; 20(16):18268-80. PubMed ID: 23038376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing.
    Liu S; Xiao H; Chen Y; Chen P; Yan W; Lin Q; Liu B; Xu X; Wang Y; Weng X; Liu L; Qu J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chalcogenide Photonic Crystals Fabricated by Soft Imprint-Assisted Photodoping of Silver.
    Wei L; Qian J; Dong L; Lu M
    Small; 2020 May; 16(19):e2000472. PubMed ID: 32309904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic-inorganic hybrid microdisk laser with dye and silica mixed doping prepared by ink-jet printing method.
    Mikami Y; Yoshioka H; Ryu S; Nishimura N; Oki Y
    Opt Express; 2018 Mar; 26(6):7140-7147. PubMed ID: 29609400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High quality chalcogenide-silica hybrid wedge resonator.
    Kang G; Krogstad MR; Grayson M; Kim DG; Lee H; Gopinath JT; Park W
    Opt Express; 2017 Jun; 25(13):15581-15589. PubMed ID: 28788980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges.
    Carlie N; Musgraves JD; Zdyrko B; Luzinov I; Hu J; Singh V; Agarwal A; Kimerling LC; Canciamilla A; Morichetti F; Melloni A; Richardson K
    Opt Express; 2010 Dec; 18(25):26728-43. PubMed ID: 21165023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithic integration of a nanomechanical resonator to an optical microdisk cavity.
    Basarir O; Bramhavar S; Ekinci KL
    Opt Express; 2012 Feb; 20(4):4272-9. PubMed ID: 22418186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical racetrack resonator transduction of nanomechanical cantilevers.
    Sauer VT; Diao Z; Freeman MR; Hiebert WK
    Nanotechnology; 2014 Feb; 25(5):055202. PubMed ID: 24406727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface defect analysis on formed chalcogenide glass Ge
    Zhou T; Zhou Q; Xie J; Liu X; Wang X; Ruan H
    Appl Opt; 2017 Oct; 56(30):8394-8402. PubMed ID: 29091618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic actuation of silicon optomechanical resonators.
    Sridaran S; Bhave SA
    Opt Express; 2011 May; 19(10):9020-6. PubMed ID: 21643155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chalcogenide glass nanospheres with tunable morphology by liquid-phase template approach.
    He Y; Zhao R; He Y; Chen X; Tao G; Hou C
    iScience; 2023 Mar; 26(3):106111. PubMed ID: 36879817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon carbide microdisk resonator.
    Lu X; Lee JY; Feng PX; Lin Q
    Opt Lett; 2013 Apr; 38(8):1304-6. PubMed ID: 23595466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chalcogenide microfiber-assisted silica microfiber for ultrasound detection.
    Fan H; Chen L; Bao X
    Opt Lett; 2020 Mar; 45(5):1128-1131. PubMed ID: 32108787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.