These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31163825)

  • 1. Demonstration of a low-distortion terahertz system-on-chip using a CPS waveguide on a thin membrane substrate.
    Smith R; Darcie T
    Opt Express; 2019 May; 27(10):13653-13663. PubMed ID: 31163825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Integrated Germanium-Based THz Impulse Radiator with an Optical Waveguide Coupled Photoconductive Switch in Silicon.
    Chen P; Hosseini M; Babakhani A
    Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31159233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrabroadband terahertz time-domain spectroscopy using III-V photoconductive membranes on silicon.
    Kohlhaas RB; Breuer S; Mutschall S; Kehrt M; Nellen S; Liebermeister L; Schell M; Globisch B
    Opt Express; 2022 Jun; 30(13):23896-23908. PubMed ID: 36225061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terahertz low-pass filter based on cascaded resonators formed by CPS bending on a thin membrane.
    Gomaa W; Smith L; Shiran V; Darcie T
    Opt Express; 2020 Oct; 28(21):31967-31978. PubMed ID: 33115160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoconductive generation and detection of THz-bandwidth pulses using near-field coupling to a free-space metallic slit waveguide.
    Smith R; Jooshesh A; Zhang J; Darcie T
    Opt Express; 2017 Oct; 25(22):26492-26499. PubMed ID: 29092138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-terahertz silicon-based on-chip absorption spectroscopy using thin-film model for biological applications.
    Hosseini Farahabadi SA; Entezami M; Abouali H; Amarloo H; Poudineh M; Safavi-Naeini S
    Sci Rep; 2022 Oct; 12(1):17747. PubMed ID: 36273243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip picosecond pulse detection and generation using graphene photoconductive switches.
    Hunter N; Mayorov AS; Wood CD; Russell C; Li L; Linfield EH; Davies AG; Cunningham JE
    Nano Lett; 2015 Mar; 15(3):1591-6. PubMed ID: 25710079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz-bandwidth photonic temporal differentiator based on a silicon-on-isolator directional coupler.
    Huang TL; Zheng AL; Dong JJ; Gao DS; Zhang XL
    Opt Lett; 2015 Dec; 40(23):5614-7. PubMed ID: 26625064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip terahertz spectroscopic techniques for measuring mesoscopic quantum systems.
    Wood CD; Mistry D; Li LH; Cunningham JE; Linfield EH; Davies AG
    Rev Sci Instrum; 2013 Aug; 84(8):085101. PubMed ID: 24007101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-field THz pulses from a GaAs photoconductive emitter for non-linear THz studies.
    Singh A; Li J; Pashkin A; Rana R; Winnerl S; Helm M; Schneider H
    Opt Express; 2021 Jun; 29(13):19920-19927. PubMed ID: 34266092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-space terahertz radiation from a LT-GaAs-on-quartz large-area photoconductive emitter.
    Bacon DR; Burnett AD; Swithenbank M; Russell C; Li L; Wood CD; Cunningham J; Linfield EH; Davies AG; Dean P; Freeman JR
    Opt Express; 2016 Nov; 24(23):26986-26997. PubMed ID: 27857425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoconductive arrays on insulating substrates for high-field terahertz generation.
    Bacon DR; Gill TB; Rosamond M; Burnett AD; Dunn A; Li L; Linfield EH; Davies AG; Dean P; Freeman JR
    Opt Express; 2020 Jun; 28(12):17219-17231. PubMed ID: 32679934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond response of a free-standing LT-GaAs photoconductive switch.
    Zheng X; Xu Y; Sobolewski R; Adam R; Mikulics M; Siegel M; Kordos P
    Appl Opt; 2003 Mar; 42(9):1726-31. PubMed ID: 12665104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonics-enhanced photoconductive terahertz detector pumped by Ytterbium-doped fiber laser.
    Turan D; Yardimci NT; Jarrahi M
    Opt Express; 2020 Feb; 28(3):3835-3845. PubMed ID: 32122045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection.
    Singh A; Pal S; Surdi H; Prabhu SS; Mathimalar S; Nanal V; Pillay RG; Döhler GH
    Opt Express; 2015 Mar; 23(5):6656-61. PubMed ID: 25836882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz radiation using log-spiral-based low-temperature-grown InGaAs photoconductive antenna pumped by mode-locked Yb-doped fiber laser.
    Kong MS; Kim JS; Han SP; Kim N; Moon K; Park KH; Jeon MY
    Opt Express; 2016 Apr; 24(7):7037-45. PubMed ID: 27136997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a split-ring-resonator-loaded transmission line at terahertz frequencies.
    Smith L; Shiran V; Gomaa W; Darcie T
    Opt Express; 2021 Jul; 29(15):23282-23289. PubMed ID: 34614595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation.
    Jooshesh A; Fesharaki F; Bahrami-Yekta V; Mahtab M; Tiedje T; Darcie TE; Gordon R
    Opt Express; 2017 Sep; 25(18):22140-22148. PubMed ID: 29041502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Speed Terahertz Modulator on the Chip Based on Tunable Terahertz Slot Waveguide.
    Singh PK; Sonkusale S
    Sci Rep; 2017 Jan; 7():40933. PubMed ID: 28102306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters.
    Guo YJ; Da Xu K; Tang X
    Opt Express; 2018 Apr; 26(8):10589-10598. PubMed ID: 29715993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.