These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 31164229)
1. Modeling the competitive adsorption of sample solvent and solute in supercritical fluid chromatography. Rédei C; Felinger A J Chromatogr A; 2019 Oct; 1603():348-354. PubMed ID: 31164229 [TBL] [Abstract][Full Text] [Related]
2. Systematic investigations of peak deformations due to co-solvent adsorption in preparative supercritical fluid chromatography. Glenne E; Leek H; Klarqvist M; Samuelsson J; Fornstedt T J Chromatogr A; 2017 May; 1496():141-149. PubMed ID: 28366564 [TBL] [Abstract][Full Text] [Related]
3. The adsorption of methanol on reversed phase stationary phases in supercritical fluid chromatography. Kazmouz MY; Rédei C; Felinger A J Chromatogr A; 2021 Sep; 1653():462386. PubMed ID: 34274884 [TBL] [Abstract][Full Text] [Related]
4. Fundamental investigation of impact of water and TFA additions in peptide sub/supercritical fluid separations. Samuelsson J; Leśko M; Thunberg L; Weinmann AL; Limé F; Enmark M; Fornstedt T J Chromatogr A; 2024 Sep; 1732():465203. PubMed ID: 39096781 [TBL] [Abstract][Full Text] [Related]
5. Peak deformations in preparative supercritical fluid chromatography due to co-solvent adsorption. Glenne E; Leek H; Klarqvist M; Samuelsson J; Fornstedt T J Chromatogr A; 2016 Oct; 1468():200-208. PubMed ID: 27641721 [TBL] [Abstract][Full Text] [Related]
6. The modeling of overloaded elution band profiles in supercritical fluid chromatography. Vajda P; Guiochon G J Chromatogr A; 2014 Mar; 1333():116-23. PubMed ID: 24529406 [TBL] [Abstract][Full Text] [Related]
7. Comparison of large scale purification processes of naproxen enantiomers by chromatography using methanol-water and methanol-supercritical carbon dioxide mobile phases. Kamarei F; Vajda P; Guiochon G J Chromatogr A; 2013 Sep; 1308():132-8. PubMed ID: 23958697 [TBL] [Abstract][Full Text] [Related]
8. Unravelling the effects of mobile phase additives in supercritical fluid chromatography-Part II: Adsorption on the stationary phase. West C; Lemasson E J Chromatogr A; 2019 May; 1593():135-146. PubMed ID: 30803789 [TBL] [Abstract][Full Text] [Related]
9. [Effect of sample solvents on retention in packed column supercritical fluid chromatography]. Lu F; Liu LL; Wu YT Se Pu; 2000 Mar; 18(2):155-7. PubMed ID: 12541595 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of co-solvent fraction, pressure and temperature effects in analytical and preparative supercritical fluid chromatography. Åsberg D; Enmark M; Samuelsson J; Fornstedt T J Chromatogr A; 2014 Dec; 1374():254-260. PubMed ID: 25499060 [TBL] [Abstract][Full Text] [Related]
11. Unexpected retention and efficiency behaviors in supercritical fluid chromatography: A thermodynamic interpretation. Gritti F J Chromatogr A; 2016 Oct; 1468():209-216. PubMed ID: 27641720 [TBL] [Abstract][Full Text] [Related]
12. Determination of adsorption isotherms in supercritical fluid chromatography. Enmark M; Forssén P; Samuelsson J; Fornstedt T J Chromatogr A; 2013 Oct; 1312():124-33. PubMed ID: 24041510 [TBL] [Abstract][Full Text] [Related]
13. Systematic investigations of peak distortions due to additives in supercritical fluid chromatography. Glenne E; Samuelsson J; Leek H; Forssén P; Klarqvist M; Fornstedt T J Chromatogr A; 2020 Jun; 1621():461048. PubMed ID: 32204879 [TBL] [Abstract][Full Text] [Related]
14. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part I: Optimization of mobile phase composition. Lemasson E; Bertin S; Hennig P; Boiteux H; Lesellier E; West C J Chromatogr A; 2015 Aug; 1408():217-26. PubMed ID: 26195034 [TBL] [Abstract][Full Text] [Related]
15. Predictions of overloaded concentration profiles in supercritical fluid chromatography. Leśko M; Samuelsson J; Glenne E; Kaczmarski K; Fornstedt T J Chromatogr A; 2021 Feb; 1639():461926. PubMed ID: 33535113 [TBL] [Abstract][Full Text] [Related]
16. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part II. Selection of an orthogonal set of stationary phases. Lemasson E; Bertin S; Hennig P; Boiteux H; Lesellier E; West C J Chromatogr A; 2015 Aug; 1408():227-35. PubMed ID: 26195036 [TBL] [Abstract][Full Text] [Related]
17. Enantioseparation of flurbiprofen on amylose-derived chiral stationary phase by supercritical fluid chromatography. Wenda C; Rajendran A J Chromatogr A; 2009 Dec; 1216(50):8750-8. PubMed ID: 19286187 [TBL] [Abstract][Full Text] [Related]
18. Effect of ionic additives on the elution of sodium aryl sulfonates in supercritical fluid chromatography. Zheng J; Taylor LT; Pinkston JD; Mangels ML J Chromatogr A; 2005 Aug; 1082(2):220-9. PubMed ID: 16035365 [TBL] [Abstract][Full Text] [Related]
19. Modelling of retention in analytical supercritical fluid chromatography for CO2-Methanol mobile phase. Leśko M; Poe DP; Kaczmarski K J Chromatogr A; 2013 Aug; 1305():285-92. PubMed ID: 23891374 [TBL] [Abstract][Full Text] [Related]
20. Effect of the injection of water-containing diluents on band broadening in analytical supercritical fluid chromatography. Batteau M; Faure K J Chromatogr A; 2022 Jun; 1673():463056. PubMed ID: 35468373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]