These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31164401)

  • 1. The β-hairpin region of the cyanobacterial F
    Akiyama K; Kondo K; Inabe K; Murakami S; Wakabayashi KI; Hisabori T
    Biochem J; 2019 Jun; 476(12):1771-1780. PubMed ID: 31164401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the γ-ε complex of cyanobacterial F
    Murakami S; Kondo K; Katayama S; Hara S; Sunamura EI; Yamashita E; Groth G; Hisabori T
    Biochem J; 2018 Sep; 475(18):2925-2939. PubMed ID: 30054433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amputation of a C-terminal helix of the γ subunit increases ATP-hydrolysis activity of cyanobacterial F
    Kondo K; Takeyama Y; Sunamura EI; Madoka Y; Fukaya Y; Isu A; Hisabori T
    Biochim Biophys Acta Bioenerg; 2018 May; 1859(5):319-325. PubMed ID: 29470949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop.
    Buchert F; Konno H; Hisabori T
    Biochim Biophys Acta; 2015; 1847(4-5):441-450. PubMed ID: 25660164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional analysis of the intrinsic inhibitor subunit epsilon of F1-ATPase from photosynthetic organisms.
    Yagi H; Konno H; Murakami-Fuse T; Isu A; Oroguchi T; Akutsu H; Ikeguchi M; Hisabori T
    Biochem J; 2009 Dec; 425(1):85-94. PubMed ID: 19785575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch.
    Kim Y; Konno H; Sugano Y; Hisabori T
    J Biol Chem; 2011 Mar; 286(11):9071-8. PubMed ID: 21193405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the relationship between ADP- and epsilon-induced inhibition in cyanobacterial F1-ATPase.
    Konno H; Isu A; Kim Y; Murakami-Fuse T; Sugano Y; Hisabori T
    J Biol Chem; 2011 Apr; 286(15):13423-9. PubMed ID: 21345803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conformational change of the γ subunit indirectly regulates the activity of cyanobacterial F1-ATPase.
    Sunamura E; Konno H; Imashimizu M; Mochimaru M; Hisabori T
    J Biol Chem; 2012 Nov; 287(46):38695-704. PubMed ID: 23012354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulator of the F1 motor: inhibition of rotation of cyanobacterial F1-ATPase by the epsilon subunit.
    Konno H; Murakami-Fuse T; Fujii F; Koyama F; Ueoka-Nakanishi H; Pack CG; Kinjo M; Hisabori T
    EMBO J; 2006 Oct; 25(19):4596-604. PubMed ID: 16977308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The N-terminal region of the ϵ subunit from cyanobacterial ATP synthase alone can inhibit ATPase activity.
    Inabe K; Kondo K; Yoshida K; Wakabayashi KI; Hisabori T
    J Biol Chem; 2019 Jun; 294(26):10094-10103. PubMed ID: 31068416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phototroph-specific β-hairpin structure of the γ subunit of F
    Kondo K; Izumi M; Inabe K; Yoshida K; Imashimizu M; Suzuki T; Hisabori T
    J Biol Chem; 2021 Sep; 297(3):101027. PubMed ID: 34339736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation.
    Okuno D; Fujisawa R; Iino R; Hirono-Hara Y; Imamura H; Noji H
    Proc Natl Acad Sci U S A; 2008 Dec; 105(52):20722-7. PubMed ID: 19075235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ATP synthase gamma subunit provides the primary site of activation of the chloroplast enzyme: experiments with a chloroplast-like Synechocystis 6803 mutant.
    Krenn BE; Strotmann H; Van Walraven HS; Scholts MJ; Kraayenhof R
    Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):841-5. PubMed ID: 9169620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large conformational changes of the epsilon subunit in the bacterial F1F0 ATP synthase provide a ratchet action to regulate this rotary motor enzyme.
    Tsunoda SP; Rodgers AJ; Aggeler R; Wilce MC; Yoshida M; Capaldi RA
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6560-4. PubMed ID: 11381110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli.
    Uhlin U; Cox GB; Guss JM
    Structure; 1997 Sep; 5(9):1219-30. PubMed ID: 9331422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational transitions of subunit epsilon in ATP synthase from thermophilic Bacillus PS3.
    Feniouk BA; Kato-Yamada Y; Yoshida M; Suzuki T
    Biophys J; 2010 Feb; 98(3):434-42. PubMed ID: 20141757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological impact of intrinsic ADP inhibition of cyanobacterial FoF1 conferred by the inherent sequence inserted into the gammasubunit.
    Sunamura E; Konno H; Imashimizu-Kobayashi M; Sugano Y; Hisabori T
    Plant Cell Physiol; 2010 Jun; 51(6):855-65. PubMed ID: 20421199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments on structural and functional aspects of the F1 sector of H+-linked ATPases.
    Vignais PV; Satre M
    Mol Cell Biochem; 1984; 60(1):33-71. PubMed ID: 6231469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reassembly of Synechocystis sp. PCC 6803 F1-ATPase from its over-expressed subunits.
    Steinemann D; Engelbrecht S; Lill H
    FEBS Lett; 1995 Apr; 362(2):171-4. PubMed ID: 7720866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the epsilon subunit of thermophilic F1-ATPase as a sensor for ATP.
    Kato S; Yoshida M; Kato-Yamada Y
    J Biol Chem; 2007 Dec; 282(52):37618-23. PubMed ID: 17933866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.