These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 31164427)

  • 21. Abundance of Alnus incana ssp. rugosa in Adirondack Mountain shrub wetlands and its influence on inorganic nitrogen.
    Kiernan BD; Hurd TM; Raynal DJ
    Environ Pollut; 2003; 123(3):347-54. PubMed ID: 12667762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From tolerance to acute metabolic deregulation: contribution of proteomics to dig into the molecular response of alder species under a polymetallic exposure.
    Printz B; Sergeant K; Lutts S; Guignard C; Renaut J; Hausman JF
    J Proteome Res; 2013 Nov; 12(11):5160-79. PubMed ID: 24015726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local and systemic effects of phosphorus and nitrogen on nodulation and nodule function in Alnus incana.
    Gentili F; Huss-Danell K
    J Exp Bot; 2003 Dec; 54(393):2757-67. PubMed ID: 14585829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlations between the ages of Alnus host species and the genetic diversity of associated endosymbiotic Frankia strains from nodules.
    Dai Y; Zhang C; Xiong Z; Zhang Z
    Sci China C Life Sci; 2005 May; 48 Suppl 1():76-81. PubMed ID: 16089332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Host plant frequency and secondary metabolites are concurrently associated with insect herbivory in a dominant riparian tree.
    Moreira X; Galmán A; Francisco M; Castagneyrol B; Abdala-Roberts L
    Biol Lett; 2018 Dec; 14(12):20180281. PubMed ID: 30958244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ecophysiological characteristics of Taiwan alder (Alnus formosana) seedlings adapted to the subtropical region.
    Liao TS; Weng JH
    Tree Physiol; 2002 Apr; 22(5):355-62. PubMed ID: 11960760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frankia canadensis sp. nov., isolated from root nodules of Alnus incana subspecies rugosa.
    Normand P; Nouioui I; Pujic P; Fournier P; Dubost A; Schwob G; Klenk HP; Nguyen A; Abrouk D; Herrera-Belaroussi A; Pothier JF; Pflüger V; Fernandez MP
    Int J Syst Evol Microbiol; 2018 Sep; 68(9):3001-3011. PubMed ID: 30059001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tree Age Effects on Fine Root Biomass and Morphology over Chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands.
    Jagodzinski AM; Ziółkowski J; Warnkowska A; Prais H
    PLoS One; 2016; 11(2):e0148668. PubMed ID: 26859755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heavy metal stress in alders: Tolerance and vulnerability of the actinorhizal symbiosis.
    Bélanger PA; Bellenger JP; Roy S
    Chemosphere; 2015 Nov; 138():300-8. PubMed ID: 26091871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effects of N-fixing tree species (Alnus sibirica)on amino sugars in soil aggregates of Larix kaempferi plantation in eastern Liaoning Province, China.].
    Jing YL; Liu SR; Yin Y; Yao RS; Zhang SQ; Mao RX
    Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):1753-1758. PubMed ID: 29974682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial assessment of the alder tree in Kushiro Mire, Japan using remotely sensed imagery--effects of the surrounding land use on Kushiro Mire.
    Oki K; Awadu T; Oguma H; Omasa K
    Environ Monit Assess; 2005 Oct; 109(1-3):243-53. PubMed ID: 16240201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nutrient acquisition strategies augment growth in tropical N
    Nasto MK; Winter K; Turner BL; Cleveland CC
    Ecology; 2019 Apr; 100(4):e02646. PubMed ID: 30714149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salmon and alder as nitrogen sources to riparian forests in a boreal Alaskan watershed.
    Helfield JM; Naiman RJ
    Oecologia; 2002 Dec; 133(4):573-582. PubMed ID: 28466167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plants may alter competition by modifying nutrient bioavailability in rhizosphere: a modeling approach.
    Raynaud X; Jaillard B; Leadley PW
    Am Nat; 2008 Jan; 171(1):44-58. PubMed ID: 18171150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant community responses to stand-level nutrient fertilization in a secondary tropical dry forest.
    Waring BG; Pérez-Aviles D; Murray JG; Powers JS
    Ecology; 2019 Jun; 100(6):e02691. PubMed ID: 30989648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?
    Teste FP; Veneklaas EJ; Dixon KW; Lambers H
    Plant Cell Environ; 2015 Jan; 38(1):50-60. PubMed ID: 24811370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Green alder (Alnus viridis) encroachment shapes microbial communities in subalpine soils and impacts its bacterial or fungal symbionts differently.
    Schwob G; Roy M; Manzi S; Pommier T; Fernandez MP
    Environ Microbiol; 2017 Aug; 19(8):3235-3250. PubMed ID: 28618146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Symbiosis between Frankia and actinorhizal plants: root nodules of non-legumes.
    Pawlowski K; Sirrenberg A
    Indian J Exp Biol; 2003 Oct; 41(10):1165-83. PubMed ID: 15242283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest.
    Mo Q; Zou B; Li Y; Chen Y; Zhang W; Mao R; Ding Y; Wang J; Lu X; Li X; Tang J; Li Z; Wang F
    Sci Rep; 2015 Sep; 5():14605. PubMed ID: 26416169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina).
    Becerra A; Zak MR; Horton TR; Micolini J
    Mycorrhiza; 2005 Nov; 15(7):525-31. PubMed ID: 16034621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.