These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31164679)

  • 1. Asynchronous non-invasive high-speed BCI speller with robust non-control state detection.
    Nagel S; Spüler M
    Sci Rep; 2019 Jun; 9(1):8269. PubMed ID: 31164679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.
    Spuler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1087-90. PubMed ID: 26736454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-speed brain speller using steady-state visual evoked potentials.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Int J Neural Syst; 2014 Sep; 24(6):1450019. PubMed ID: 25081427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asynchronous c-VEP communication tools-efficiency comparison of low-target, multi-target and dictionary-assisted BCI spellers.
    Gembler FW; Benda M; Rezeika A; Stawicki PR; Volosyak I
    Sci Rep; 2020 Oct; 10(1):17064. PubMed ID: 33051500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller.
    Chen X; Wang Y; Nakanishi M; Jung TP; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3993-6. PubMed ID: 25570867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An eighty-target high-speed Chinese BCI speller.
    Chengcheng Han ; Guanghua Xu ; Jun Xie ; Min Li ; Sicong Zhang ; Ailing Luo
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1652-1655. PubMed ID: 29060201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-speed brain-computer interface (BCI) using dry EEG electrodes.
    Spüler M
    PLoS One; 2017; 12(2):e0172400. PubMed ID: 28225794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
    Spüler M; Rosenstiel W; Bogdan M
    PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broad-Band Visually Evoked Potentials: Re(con)volution in Brain-Computer Interfacing.
    Thielen J; van den Broek P; Farquhar J; Desain P
    PLoS One; 2015; 10(7):e0133797. PubMed ID: 26208328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI.
    Yang C; Yan X; Wang Y; Chen Y; Zhang H; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34237711
    [No Abstract]   [Full Text] [Related]  

  • 13. Asynchronous Brain-Computer Interfacing Based on Mixed-Coded Visual Stimuli.
    Suefusa K; Tanaka T
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2119-2129. PubMed ID: 29989946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a High-speed Mental Spelling System Combining Eye Tracking and SSVEP-based BCI with High Scalability.
    Lin X; Chen Z; Xu K; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6318-6322. PubMed ID: 31947287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust asynchronous control of ERP-Based brain-Computer interfaces using deep learning.
    Santamaría-Vázquez E; Martínez-Cagigal V; Pérez-Velasco S; Marcos-Martínez D; Hornero R
    Comput Methods Programs Biomed; 2022 Mar; 215():106623. PubMed ID: 35030477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-paced and calibration-less SSVEP-based brain-computer interface speller.
    Cecotti H
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):127-33. PubMed ID: 20071274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single stimulus location for two inputs: A combined brain-computer interface based on Steady-State Visual Evoked Potential (SSVEP).
    Wang L; Zhang Z; Han D; Zhang Z; Liu Z; Liu W
    Eur J Neurosci; 2021 Feb; 53(3):861-875. PubMed ID: 33128787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the brain response to arbitrary visual stimulation patterns for a flexible high-speed Brain-Computer Interface.
    Nagel S; Spüler M
    PLoS One; 2018; 13(10):e0206107. PubMed ID: 30346983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DTU BCI speller: an SSVEP-based spelling system with dictionary support.
    Vilic A; Kjaer TW; Thomsen CE; Puthusserypady S; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2212-5. PubMed ID: 24110162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.