These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 31164896)
1. Chemodiversity of the Glucosinolate-Myrosinase System at the Single Cell Type Resolution. Chhajed S; Misra BB; Tello N; Chen S Front Plant Sci; 2019; 10():618. PubMed ID: 31164896 [TBL] [Abstract][Full Text] [Related]
2. Atypical Myrosinase as a Mediator of Glucosinolate Functions in Plants. Sugiyama R; Hirai MY Front Plant Sci; 2019; 10():1008. PubMed ID: 31447873 [TBL] [Abstract][Full Text] [Related]
3. The Cellular and Subcellular Organization of the Glucosinolate-Myrosinase System against Herbivores and Pathogens. Lv Q; Li X; Fan B; Zhu C; Chen Z Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163500 [TBL] [Abstract][Full Text] [Related]
4. Hijacking the Mustard-Oil Bomb: How a Glucosinolate-Sequestering Flea Beetle Copes With Plant Myrosinases. Sporer T; Körnig J; Wielsch N; Gebauer-Jung S; Reichelt M; Hupfer Y; Beran F Front Plant Sci; 2021; 12():645030. PubMed ID: 34093609 [TBL] [Abstract][Full Text] [Related]
5. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Winde I; Wittstock U Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065 [TBL] [Abstract][Full Text] [Related]
6. Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions. Bhat R; Vyas D Crit Rev Biotechnol; 2019 Jun; 39(4):508-523. PubMed ID: 30939944 [TBL] [Abstract][Full Text] [Related]
7. Specialized Vacuoles of Myrosin Cells: Chemical Defense Strategy in Brassicales Plants. Shirakawa M; Hara-Nishimura I Plant Cell Physiol; 2018 Jul; 59(7):1309-1316. PubMed ID: 29897512 [TBL] [Abstract][Full Text] [Related]
8. Lifetimes of the Aglycone Substrates of Specifier Proteins, the Autonomous Iron Enzymes That Dictate the Products of the Glucosinolate-Myrosinase Defense System in Brassica Plants. Mocniak LE; Elkin K; Bollinger JM Biochemistry; 2020 Jul; 59(26):2432-2441. PubMed ID: 32516526 [TBL] [Abstract][Full Text] [Related]
9. Identification of nitric oxide regulated low abundant myrosinases from seeds and seedlings of Brassica juncea. Sougrakpam Y; Deswal R Plant Sci; 2024 Feb; 339():111932. PubMed ID: 38030037 [TBL] [Abstract][Full Text] [Related]
10. Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. Wittstock U; Burow M Arabidopsis Book; 2010; 8():e0134. PubMed ID: 22303260 [TBL] [Abstract][Full Text] [Related]
11. Glucosinolate Desulfation by the Phloem-Feeding Insect Bemisia tabaci. Malka O; Shekhov A; Reichelt M; Gershenzon J; Vassão DG; Morin S J Chem Ecol; 2016 Mar; 42(3):230-5. PubMed ID: 26961756 [TBL] [Abstract][Full Text] [Related]
12. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Shakour ZT; Shehab NG; Gomaa AS; Wessjohann LA; Farag MA Biotechnol Adv; 2022; 54():107784. PubMed ID: 34102260 [TBL] [Abstract][Full Text] [Related]
13. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. Burow M; Markert J; Gershenzon J; Wittstock U FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417 [TBL] [Abstract][Full Text] [Related]
14. Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties. Andersson D; Chakrabarty R; Bejai S; Zhang J; Rask L; Meijer J Phytochemistry; 2009; 70(11-12):1345-54. PubMed ID: 19703694 [TBL] [Abstract][Full Text] [Related]
15. Selection pressure by specialist and generalist insect herbivores leads to optimal constitutive plant defense. A mathematical model. Chakraborty S; Gershenzon J; Schuster S Ecol Evol; 2023 Dec; 13(12):e10763. PubMed ID: 38058520 [TBL] [Abstract][Full Text] [Related]
16. Microbiota: a mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. Tian S; Liu X; Lei P; Zhang X; Shan Y J Sci Food Agric; 2018 Mar; 98(4):1255-1260. PubMed ID: 28869285 [TBL] [Abstract][Full Text] [Related]
17. A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense. Kuchernig JC; Backenköhler A; Lübbecke M; Burow M; Wittstock U Phytochemistry; 2011 Oct; 72(14-15):1699-709. PubMed ID: 21783213 [TBL] [Abstract][Full Text] [Related]
19. Biotechnological approaches in glucosinolate production. Petersen A; Wang C; Crocoll C; Halkier BA J Integr Plant Biol; 2018 Dec; 60(12):1231-1248. PubMed ID: 30080309 [TBL] [Abstract][Full Text] [Related]
20. Determination of goitrogenic metabolites in the serum of male wistar rat fed structurally different glucosinolates. Choi EJ; Zhang P; Kwon H Toxicol Res; 2014 Jun; 30(2):109-16. PubMed ID: 25071920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]