These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31164902)

  • 1. Learning Causal Biological Networks With the Principle of Mendelian Randomization.
    Badsha MB; Fu AQ
    Front Genet; 2019; 10():460. PubMed ID: 31164902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRPC: An R Package for Inference of Causal Graphs.
    Badsha MB; Martin EA; Fu AQ
    Front Genet; 2021; 12():651812. PubMed ID: 33995486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data.
    Yavorska OO; Burgess S
    Int J Epidemiol; 2017 Dec; 46(6):1734-1739. PubMed ID: 28398548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CAUSAL GRAPHICAL MODELS IN SYSTEMS GENETICS: A UNIFIED FRAMEWORK FOR JOINT INFERENCE OF CAUSAL NETWORK AND GENETIC ARCHITECTURE FOR CORRELATED PHENOTYPES.
    Neto EC; Keller MP; Attie AD; Yandell BS
    Ann Appl Stat; 2010 Mar; 4(1):320-339. PubMed ID: 21218138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring Regulatory Networks From Mixed Observational Data Using Directed Acyclic Graphs.
    Zhong W; Dong L; Poston TB; Darville T; Spracklen CN; Wu D; Mohlke KL; Li Y; Li Q; Zheng X
    Front Genet; 2020; 11():8. PubMed ID: 32127796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DCI: learning causal differences between gene regulatory networks.
    Belyaeva A; Squires C; Uhler C
    Bioinformatics; 2021 Sep; 37(18):3067-3069. PubMed ID: 33704425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Powerful and robust inference of complex phenotypes' causal genes with dependent expression quantitative loci by a median-based Mendelian randomization.
    Jiang L; Miao L; Yi G; Li X; Xue C; Li MJ; Huang H; Li M
    Am J Hum Genet; 2022 May; 109(5):838-856. PubMed ID: 35460606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An algorithm for direct causal learning of influences on patient outcomes.
    Rathnam C; Lee S; Jiang X
    Artif Intell Med; 2017 Jan; 75():1-15. PubMed ID: 28363452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian network feature finder (BANFF): an R package for gene network feature selection.
    Lan Z; Zhao Y; Kang J; Yu T
    Bioinformatics; 2016 Dec; 32(23):3685-3687. PubMed ID: 27503223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust causal inference using directed acyclic graphs: the R package 'dagitty'.
    Textor J; van der Zander B; Gilthorpe MS; Liskiewicz M; Ellison GT
    Int J Epidemiol; 2016 Dec; 45(6):1887-1894. PubMed ID: 28089956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
    Cai X; Bazerque JA; Giannakis GB
    PLoS Comput Biol; 2013; 9(5):e1003068. PubMed ID: 23717196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SEMgraph: an R package for causal network inference of high-throughput data with structural equation models.
    Grassi M; Palluzzi F; Tarantino B
    Bioinformatics; 2022 Oct; 38(20):4829-4830. PubMed ID: 36040154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SmCCNet 2.0: A Comprehensive Tool for Multi-omics Network Inference with Shiny Visualization.
    Liu W; Vu T; Konigsberg I; Pratte K; Zhuang Y; Kechris K
    bioRxiv; 2024 Apr; ():. PubMed ID: 38045372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian weighted Mendelian randomization for causal inference based on summary statistics.
    Zhao J; Ming J; Hu X; Chen G; Liu J; Yang C
    Bioinformatics; 2020 Mar; 36(5):1501-1508. PubMed ID: 31593215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NEArender: an R package for functional interpretation of 'omics' data via network enrichment analysis.
    Jeggari A; Alexeyenko A
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):118. PubMed ID: 28361684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of marginal causal relationships in gene networks from observational and interventional expression data.
    Monneret G; Jaffrézic F; Rau A; Zerjal T; Nuel G
    PLoS One; 2017; 12(3):e0171142. PubMed ID: 28301504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpreting transcriptional changes using causal graphs: new methods and their practical utility on public networks.
    Fakhry CT; Choudhary P; Gutteridge A; Sidders B; Chen P; Ziemek D; Zarringhalam K
    BMC Bioinformatics; 2016 Aug; 17(1):318. PubMed ID: 27553489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data.
    Opgen-Rhein R; Strimmer K
    BMC Syst Biol; 2007 Aug; 1():37. PubMed ID: 17683609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIGNET: Transcriptome-wide Causal Inference for Gene Regulatory Networks.
    Jiang Z; Chen C; Xu Z; Wang X; Zhang M; Zhang D
    Res Sq; 2023 Jul; ():. PubMed ID: 37546848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new statistical framework for genetic pleiotropic analysis of high dimensional phenotype data.
    Wang P; Rahman M; Jin L; Xiong M
    BMC Genomics; 2016 Nov; 17(1):881. PubMed ID: 27821073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.