These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31164949)

  • 1. Design of a double-decker coordination cage revisited to make new cages and exemplify ligand isomerism.
    Samantray S; Bandi S; Chand DK
    Beilstein J Org Chem; 2019; 15():1129-1140. PubMed ID: 31164949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent and Counteranion Assisted Dynamic Self-Assembly of Molecular Triangles and Tetrahedral Cages.
    Kumar A; Banerjee R; Zangrando E; Mukherjee PS
    Inorg Chem; 2022 Jan; 61(4):2368-2377. PubMed ID: 35029966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Recombination Phenomena in Palladium(II)-Based Self-Assembled Complexes.
    Ganta S; Chand DK
    Inorg Chem; 2018 May; 57(9):5145-5158. PubMed ID: 29688731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Mechanical Interlocking of D-Shaped Molecular Karabiners bearing Coordination-Bond Loaded Gates: Route to Self-Assembled [2]Catenanes.
    Prusty S; Krishnaswamy S; Bandi S; Chandrika B; Luo J; McIndoe JS; Hanan GS; Chand DK
    Chemistry; 2015 Oct; 21(43):15174-87. PubMed ID: 26394809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium(II) and mercury(II) complexes of an NO2S2-donor macrocycle and its ditopic xylyl-bridged analogue.
    Jin Y; Yoon I; Seo J; Lee JE; Moon ST; Kim J; Han SW; Park KM; Lindoy LF; Lee SS
    Dalton Trans; 2005 Feb; (4):788-96. PubMed ID: 15702191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand Isomerism in Coordination Cages.
    Dasary H; Jagan R; Chand DK
    Inorg Chem; 2018 Oct; 57(19):12222-12231. PubMed ID: 30230331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale metallogel via self-assembly of self-assembled trinuclear coordination rings: multi-stimuli-responsive soft materials.
    Ganta S; Chand DK
    Dalton Trans; 2015 Sep; 44(34):15181-8. PubMed ID: 25826610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Octadecanuclear gear wheels by self-assembly of self-assembled "double saddle"-type coordination entities: molecular "rangoli".
    Dasary H; Jagan R; Chand DK
    Chemistry; 2015 Jan; 21(4):1499-507. PubMed ID: 25413031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicomponent Self-Assembly of Pd
    Kumar A; Mukherjee PS
    Chemistry; 2020 Apr; 26(21):4842-4849. PubMed ID: 32039526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Configurational ligand isomerism in conjoined-cages.
    Dasary H; Sarkar M; Chand DK
    Chem Commun (Camb); 2022 Jul; 58(61):8480-8483. PubMed ID: 35792679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometrically controlled revocable self-assembled "spiro" versus quadruple-stranded "double-decker" type coordination cages.
    Bandi S; Pal AK; Hanan GS; Chand DK
    Chemistry; 2014 Oct; 20(41):13122-6. PubMed ID: 25138657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatility of Two Diimidazole Building Blocks in Coordination-Driven Self-Assembly.
    Roy B; Saha R; Ghosh AK; Patil Y; Mukherjee PS
    Inorg Chem; 2017 Mar; 56(6):3579-3588. PubMed ID: 28252290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuneable reactivity with PPh3 and SnX2 of four- and five-coordinate Pd(II) and Pt(II) complexes containing polyphosphines.
    Fernández-Anca D; García-Seijo MI; García-Fernández ME
    Dalton Trans; 2013 Jul; 42(28):10221-32. PubMed ID: 23728361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metalation studies of 3- and 4-pyridyloxycyclophosphazenes: metallamacrocycles to coordination polymers.
    Chandrasekhar V; Narayanan RS
    Dalton Trans; 2013 May; 42(18):6619-32. PubMed ID: 23478470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse anion exchange of pliable [X
    Sarada G; Kim A; Kim D; Jung OS
    Dalton Trans; 2020 May; 49(19):6183-6190. PubMed ID: 32301465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible ligands and structural diversity: isomerism in Cd(NO3)2 coordination polymers.
    Cordes DB; Bailey AS; Caradoc-Davies PL; Gregory DH; Hanton LR; Lee K; Spicer MD
    Inorg Chem; 2005 Apr; 44(7):2544-52. PubMed ID: 15792493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron(III) complexes of tridentate 3N ligands as functional models for catechol dioxygenases: the role of ligand N-alkyl substitution and solvent on reaction rate and product selectivity.
    Visvaganesan K; Mayilmurugan R; Suresh E; Palaniandavar M
    Inorg Chem; 2007 Nov; 46(24):10294-306. PubMed ID: 17958355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cd(ii) coordination polymers constructed from bis(pyridyl) ligands with an asymmetric spacer in chelating mode and diverse organic dicarboxylates: syntheses, structural evolutions and properties.
    Zhu LN; Deng ZP; Ng SW; Huo LH; Gao S
    Dalton Trans; 2019 Jun; 48(22):7589-7601. PubMed ID: 31066429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination of bis-(pyrazol-1-yl)amine to palladium(II): influence of the co-ligands and counter-ions on the mol-ecular and crystal structures.
    Mendoza Mde L; Bernès S; Mendoza-Díaz G
    Acta Crystallogr E Crystallogr Commun; 2015 Jan; 71(Pt 1):22-7. PubMed ID: 25705441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal-engineering studies of coordination polymers and a molecular-looped complex containing dipyridyl-amide ligands.
    Tzeng BC; Huang YC; Chen BS; Wu WM; Lee SY; Lee GH; Peng SM
    Inorg Chem; 2007 Jan; 46(1):186-95. PubMed ID: 17198427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.