BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31164949)

  • 1. Design of a double-decker coordination cage revisited to make new cages and exemplify ligand isomerism.
    Samantray S; Bandi S; Chand DK
    Beilstein J Org Chem; 2019; 15():1129-1140. PubMed ID: 31164949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent and Counteranion Assisted Dynamic Self-Assembly of Molecular Triangles and Tetrahedral Cages.
    Kumar A; Banerjee R; Zangrando E; Mukherjee PS
    Inorg Chem; 2022 Jan; 61(4):2368-2377. PubMed ID: 35029966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Recombination Phenomena in Palladium(II)-Based Self-Assembled Complexes.
    Ganta S; Chand DK
    Inorg Chem; 2018 May; 57(9):5145-5158. PubMed ID: 29688731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Mechanical Interlocking of D-Shaped Molecular Karabiners bearing Coordination-Bond Loaded Gates: Route to Self-Assembled [2]Catenanes.
    Prusty S; Krishnaswamy S; Bandi S; Chandrika B; Luo J; McIndoe JS; Hanan GS; Chand DK
    Chemistry; 2015 Oct; 21(43):15174-87. PubMed ID: 26394809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium(II) and mercury(II) complexes of an NO2S2-donor macrocycle and its ditopic xylyl-bridged analogue.
    Jin Y; Yoon I; Seo J; Lee JE; Moon ST; Kim J; Han SW; Park KM; Lindoy LF; Lee SS
    Dalton Trans; 2005 Feb; (4):788-96. PubMed ID: 15702191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand Isomerism in Coordination Cages.
    Dasary H; Jagan R; Chand DK
    Inorg Chem; 2018 Oct; 57(19):12222-12231. PubMed ID: 30230331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale metallogel via self-assembly of self-assembled trinuclear coordination rings: multi-stimuli-responsive soft materials.
    Ganta S; Chand DK
    Dalton Trans; 2015 Sep; 44(34):15181-8. PubMed ID: 25826610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Octadecanuclear gear wheels by self-assembly of self-assembled "double saddle"-type coordination entities: molecular "rangoli".
    Dasary H; Jagan R; Chand DK
    Chemistry; 2015 Jan; 21(4):1499-507. PubMed ID: 25413031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicomponent Self-Assembly of Pd
    Kumar A; Mukherjee PS
    Chemistry; 2020 Apr; 26(21):4842-4849. PubMed ID: 32039526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Configurational ligand isomerism in conjoined-cages.
    Dasary H; Sarkar M; Chand DK
    Chem Commun (Camb); 2022 Jul; 58(61):8480-8483. PubMed ID: 35792679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometrically controlled revocable self-assembled "spiro" versus quadruple-stranded "double-decker" type coordination cages.
    Bandi S; Pal AK; Hanan GS; Chand DK
    Chemistry; 2014 Oct; 20(41):13122-6. PubMed ID: 25138657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatility of Two Diimidazole Building Blocks in Coordination-Driven Self-Assembly.
    Roy B; Saha R; Ghosh AK; Patil Y; Mukherjee PS
    Inorg Chem; 2017 Mar; 56(6):3579-3588. PubMed ID: 28252290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuneable reactivity with PPh3 and SnX2 of four- and five-coordinate Pd(II) and Pt(II) complexes containing polyphosphines.
    Fernández-Anca D; García-Seijo MI; García-Fernández ME
    Dalton Trans; 2013 Jul; 42(28):10221-32. PubMed ID: 23728361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metalation studies of 3- and 4-pyridyloxycyclophosphazenes: metallamacrocycles to coordination polymers.
    Chandrasekhar V; Narayanan RS
    Dalton Trans; 2013 May; 42(18):6619-32. PubMed ID: 23478470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse anion exchange of pliable [X
    Sarada G; Kim A; Kim D; Jung OS
    Dalton Trans; 2020 May; 49(19):6183-6190. PubMed ID: 32301465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible ligands and structural diversity: isomerism in Cd(NO3)2 coordination polymers.
    Cordes DB; Bailey AS; Caradoc-Davies PL; Gregory DH; Hanton LR; Lee K; Spicer MD
    Inorg Chem; 2005 Apr; 44(7):2544-52. PubMed ID: 15792493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron(III) complexes of tridentate 3N ligands as functional models for catechol dioxygenases: the role of ligand N-alkyl substitution and solvent on reaction rate and product selectivity.
    Visvaganesan K; Mayilmurugan R; Suresh E; Palaniandavar M
    Inorg Chem; 2007 Nov; 46(24):10294-306. PubMed ID: 17958355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cd(ii) coordination polymers constructed from bis(pyridyl) ligands with an asymmetric spacer in chelating mode and diverse organic dicarboxylates: syntheses, structural evolutions and properties.
    Zhu LN; Deng ZP; Ng SW; Huo LH; Gao S
    Dalton Trans; 2019 Jun; 48(22):7589-7601. PubMed ID: 31066429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination of bis-(pyrazol-1-yl)amine to palladium(II): influence of the co-ligands and counter-ions on the mol-ecular and crystal structures.
    Mendoza Mde L; Bernès S; Mendoza-Díaz G
    Acta Crystallogr E Crystallogr Commun; 2015 Jan; 71(Pt 1):22-7. PubMed ID: 25705441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal-engineering studies of coordination polymers and a molecular-looped complex containing dipyridyl-amide ligands.
    Tzeng BC; Huang YC; Chen BS; Wu WM; Lee SY; Lee GH; Peng SM
    Inorg Chem; 2007 Jan; 46(1):186-95. PubMed ID: 17198427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.