These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31165013)

  • 1. Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces.
    Pan Y; Kong W; Bhushan B; Zhao X
    Beilstein J Nanotechnol; 2019; 10():866-873. PubMed ID: 31165013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel reversibly switchable wettability of superhydrophobic-superhydrophilic surfaces induced by charge injection and heating.
    Ye X; Hou J; Cai D
    Beilstein J Nanotechnol; 2019; 10():840-847. PubMed ID: 31019871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liang T; Feng Y; Zeng X
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3131-3141. PubMed ID: 28032982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.
    Liu Y; Lin Z; Lin W; Moon KS; Wong CP
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3959-64. PubMed ID: 22764733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates.
    Zhang Qb; Xu D; Hung TF; Zhang K
    Nanotechnology; 2013 Feb; 24(6):065602. PubMed ID: 23340193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversibly photo-switchable wettability of stearic acid monolayer modified bismuth-based micro-/nanomaterials.
    Yang H; Hu X; Su C; Liu Y; Chen R
    Phys Chem Chem Phys; 2017 Dec; 19(47):31666-31674. PubMed ID: 29165490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces.
    Lv LB; Cui TL; Zhang B; Wang HH; Li XH; Chen JS
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15165-9. PubMed ID: 26440454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV-driven reversible switching of a polystyrene/titania nanocomposite coating between superhydrophobicity and superhydrophilicity.
    Hou W; Wang Q
    Langmuir; 2009 Jun; 25(12):6875-9. PubMed ID: 19388630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophobicity, UV protection and oil/water separation properties of fly ash/Trimethoxy(octadecyl)silane coated cotton fabrics.
    Khan MZ; Baheti V; Militky J; Ali A; Vikova M
    Carbohydr Polym; 2018 Dec; 202():571-580. PubMed ID: 30287038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and photocatalytic wettability conversion of TiO2-based superhydrophobic surfaces.
    Zhang X; Jin M; Liu Z; Nishimoto S; Saito H; Murakami T; Fujishima A
    Langmuir; 2006 Nov; 22(23):9477-9. PubMed ID: 17073465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric Superhydrophobic/Superhydrophilic Cotton Fabrics Designed by Spraying Polymer and Nanoparticles.
    Sasaki K; Tenjimbayashi M; Manabe K; Shiratori S
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):651-9. PubMed ID: 26595458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO
    Kang H; Liu Y; Lai H; Yu X; Cheng Z; Jiang L
    ACS Nano; 2018 Feb; 12(2):1074-1082. PubMed ID: 29338192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transparent surface with reversibly switchable wettability between superhydrophobicity and superhydrophilicity.
    Hua Z; Yang J; Wang T; Liu G; Zhang G
    Langmuir; 2013 Aug; 29(33):10307-12. PubMed ID: 23915149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wettability control of ZnO nanoparticles for universal applications.
    Lee M; Kwak G; Yong K
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.
    Xu QF; Liu Y; Lin FJ; Mondal B; Lyons AM
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8915-24. PubMed ID: 23889192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Durability and restoring of superhydrophobic properties in silica-based coatings.
    Mahadik SA; Fernando PD; Hegade ND; Wagh PB; Gupta SC
    J Colloid Interface Sci; 2013 Sep; 405():262-8. PubMed ID: 23746435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Chemical Surface Texturing on the Superhydrophobic Behavior of Micro-Nano-Roughened AA6082 Surfaces.
    Khaskhoussi A; Calabrese L; Patané S; Proverbio E
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uphill Water Transport on a Wettability-Patterned Surface: Experimental and Theoretical Results.
    Hirai Y; Mayama H; Matsuo Y; Shimomura M
    ACS Appl Mater Interfaces; 2017 May; 9(18):15814-15821. PubMed ID: 28421741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.
    Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA
    Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.