These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 31165267)

  • 21. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit.
    Izadifar Z; Belev G; Babyn P; Chapman D
    Biomed Eng Online; 2015 Oct; 14():91. PubMed ID: 26481447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy.
    Maeda K; Colonius T; Kreider W; Maxwell A; Cunitz B; Bailey M
    J Phys Conf Ser; 2015 Dec; 656():. PubMed ID: 27087826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement and quenching of high-intensity focused ultrasound cavitation activity via short frequency sweep gaps.
    Hallez L; Lee J; Touyeras F; Nevers A; Ashokkumar M; Hihn JY
    Ultrason Sonochem; 2016 Mar; 29():194-7. PubMed ID: 26584998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field.
    Jiao J; He Y; Yasui K; Kentish SE; Ashokkumar M; Manasseh R; Lee J
    Ultrason Sonochem; 2015 Jan; 22():70-7. PubMed ID: 25043557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bubbles with shock waves and ultrasound: a review.
    Ohl SW; Klaseboer E; Khoo BC
    Interface Focus; 2015 Oct; 5(5):20150019. PubMed ID: 26442143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface tension and quasi-emulsion of cavitation bubble cloud.
    Bai L; Chen X; Zhu G; Xu W; Lin W; Wu P; Li C; Xu D; Yan J
    Ultrason Sonochem; 2017 Mar; 35(Pt A):405-414. PubMed ID: 27816440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of interactions between bubbles on physico-chemical effects of acoustic cavitation.
    Qin D; Lei S; Zhang B; Liu Y; Tian J; Ji X; Yang H
    Ultrason Sonochem; 2024 Mar; 104():106808. PubMed ID: 38377805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of frequency sweep on sonochemiluminescence and sonoluminescence.
    Lee J; Hallez L; Touyeras F; Ashokkumar M; Hihn JY
    Ultrason Sonochem; 2020 Jun; 64():105047. PubMed ID: 32145517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.
    Pahk KJ; Gélat P; Sinden D; Dhar DK; Saffari N
    Ultrasound Med Biol; 2017 Dec; 43(12):2848-2861. PubMed ID: 28965719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of bubbles in acoustic Lichtenberg figure.
    Li F; Zhang X; Tian H; Hu J; Chen S; Mo R; Wang C; Guo J
    Ultrason Sonochem; 2022 Jun; 87():106057. PubMed ID: 35679807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizing the cavitation development and acoustic spectrum in various liquids.
    Tzanakis I; Lebon GS; Eskin DG; Pericleous KA
    Ultrason Sonochem; 2017 Jan; 34():651-662. PubMed ID: 27773292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-situ synchrotron X-ray imaging of ultrasound (US)-generated bubbles: Influence of US frequency on microbubble cavitation for membrane fouling remediation.
    Ehsani M; Zhu N; Doan H; Lohi A; Abdelrasoul A
    Ultrason Sonochem; 2021 Sep; 77():105697. PubMed ID: 34388491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.
    Xi X; Cegla F; Mettin R; Holsteyns F; Lippert A
    J Acoust Soc Am; 2014 Apr; 135(4):1731-41. PubMed ID: 25234973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the liquid viscosity on the formation of bubble structures in a 20kHz field.
    Salinas V; Vargas Y; Louisnard O; Gaete L
    Ultrason Sonochem; 2015 Jan; 22():227-34. PubMed ID: 25082762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The size of active bubbles for the production of hydrogen in sonochemical reaction field.
    Merouani S; Hamdaoui O
    Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Cavitation and boiling of bubbles at the focal region during high intensity focused ultrasound exposure].
    Zhong M; Ai H; Li F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Oct; 29(5):983-6. PubMed ID: 23198445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.
    Chen H; Li X; Wan M
    Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.