These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31165531)

  • 1. "Turn-On" Activatable AIE Dots for Tumor Hypoxia Imaging.
    Xue T; Jia X; Wang J; Xiang J; Wang W; Du J; He Y
    Chemistry; 2019 Jul; 25(41):9634-9638. PubMed ID: 31165531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ construction of a self-assembled AIE probe for tumor hypoxia imaging.
    Xue T; Shao K; Xiang J; Pan X; Zhu Z; He Y
    Nanoscale; 2020 Apr; 12(14):7509-7513. PubMed ID: 32227022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Probing Intracellular Drug Release from Redox-Responsive Micelles by United FRET and AIE.
    Wang X; Li J; Yan Q; Chen Y; Fan A; Wang Z; Zhao Y
    Macromol Biosci; 2018 Mar; 18(3):. PubMed ID: 29360270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia-Responsive Molecular Probe Lighted up by Peptide Self-Assembly for Cancer Cell Imaging.
    Ai S; Dong W; Li J; Yang Z
    J Biomed Nanotechnol; 2022 Apr; 18(4):1019-1027. PubMed ID: 35854443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorogen-peptide conjugates with tunable aggregation-induced emission characteristics for bioprobe design.
    Zhang R; Yuan Y; Liang J; Kwok RT; Zhu Q; Feng G; Geng J; Tang BZ; Liu B
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14302-10. PubMed ID: 25089639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zwitterionic Phosphorylcholine-TPE Conjugate for pH-Responsive Drug Delivery and AIE Active Imaging.
    Chen Y; Han H; Tong H; Chen T; Wang H; Ji J; Jin Q
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21185-92. PubMed ID: 27482632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of a HA-AuNPs@AIED nanoassembly for activatable fluorescence detection of HAase and imaging in tumor cells.
    Wang S; Zhang CH; Zhang P; Chen S; Song ZL; Chen J; Zeng R
    Anal Methods; 2021 May; 13(17):2030-2036. PubMed ID: 33955975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving highly sensitive detection of Cu
    Yang J; Chai J; Yang B; Liu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():272-279. PubMed ID: 30557844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift.
    Şen E; Meral K; Atılgan S
    Chemistry; 2016 Jan; 22(2):736-45. PubMed ID: 26617068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An activatable liposomal fluorescence probe based on fluorescence resonance energy transfer and aggregation induced emission effect for sensitive tumor imaging.
    Xia Y; Xu C; Zhang X; Gao J; Wu Y; Li C; Wang Z
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110789. PubMed ID: 31955018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probe Intracellular Trafficking of a Polymeric DNA Delivery Vehicle by Functionalization with an Aggregation-Induced Emissive Tetraphenylethene Derivative.
    Han X; Chen Q; Lu H; Ma J; Gao H
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28494-501. PubMed ID: 26634294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation-induced emission of tetraphenylethene derivative as a fluorescence method for probing the assembling/disassembling of amphiphilic molecules.
    Zhu C; Pang S; Xu J; Jia L; Xu F; Mei J; Qin A; Sun J; Ji J; Tang B
    Analyst; 2011 Aug; 136(16):3343-8. PubMed ID: 21750804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual aggregation-induced emission for enhanced fluorescence sensing of furin activity in vitro and in living cells.
    Liu X; Liang G
    Chem Commun (Camb); 2017 Jan; 53(6):1037-1040. PubMed ID: 28000813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae.
    Wang E; Zhao E; Hong Y; Lam JWY; Tang BZ
    J Mater Chem B; 2014 Apr; 2(14):2013-2019. PubMed ID: 32261636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabricating a fluorescence resonance energy transfer system with AIE molecular for sensitive detection of Cu(II) ions.
    Guan P; Yang B; Liu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117604. PubMed ID: 31605938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jellyfish-inspired smart tetraphenylethene lipids with unique AIE fluorescence, thermal response, and cell membrane interaction.
    Zheng Y; Li Y; Ke C; Duan M; Zhu L; Zhou X; Yang M; Jiang ZX; Chen S
    J Mater Chem B; 2024 Feb; 12(9):2373-2383. PubMed ID: 38349037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioprobes based on AIE fluorogens.
    Ding D; Li K; Liu B; Tang BZ
    Acc Chem Res; 2013 Nov; 46(11):2441-53. PubMed ID: 23742638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-enhanced bacterial killing and wash-free imaging based on AIE fluorogen.
    Zhao E; Chen Y; Wang H; Chen S; Lam JW; Leung CW; Hong Y; Tang BZ
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7180-8. PubMed ID: 25789982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible and Turn-On Fluorescence Detection of Phosphate in Aqueous Solution and Living Cell Imaging by Supramolecular Metallacycles with AIE-Active Ligands.
    Kou YL; Tong J; Meng C; Yuan Q; Wang J; Yu SY
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40828-40838. PubMed ID: 37597236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct encapsulation of AIE-active dye with β cyclodextrin terminated polymers: Self-assembly and biological imaging.
    Huang H; Xu D; Liu M; Jiang R; Mao L; Huang Q; Wan Q; Wen Y; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():862-867. PubMed ID: 28576060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.