These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 31165704)

  • 1. 3D Interpenetrated Graphene Foam/58S Bioactive Glass Scaffolds for Electrical-Stimulation-Assisted Differentiation of Rabbit Mesenchymal Stem Cells to Enhance Bone Regeneration.
    Yao Q; Liu H; Lin X; Ma L; Zheng X; Liu Y; Huang P; Yu S; Zhang W; Lin M; Dai L; Liu Y
    J Biomed Nanotechnol; 2019 Mar; 15(3):602-611. PubMed ID: 31165704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed gelatin/sodium alginate/58S bioactive glass scaffolds promote osteogenesis
    Tu X; Guo L; Li Y; Tan G; Chen R; Wu J; Miao G; Guo L; Zhang C; Zou T; Zhang Y; Jiang Q
    J Biomater Appl; 2023 May; 37(10):1758-1766. PubMed ID: 36971120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of alginate coating on the mechanical and biological properties of 58S bioactive glass scaffolds.
    Keshavarz M; Alizadeh P
    Int J Biol Macromol; 2021 Jan; 167():947-961. PubMed ID: 33186647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous bioactive glass-coated 3D printed borosilicate bioactive glass scaffolds for improving repair of bone defects.
    Qi X; Wang H; Zhang Y; Pang L; Xiao W; Jia W; Zhao S; Wang D; Huang W; Wang Q
    Int J Biol Sci; 2018; 14(4):471-484. PubMed ID: 29725268
    [No Abstract]   [Full Text] [Related]  

  • 6. [Nano-sized bioactive glass enhances osteogenesis of critical bone defect in rabbits].
    Gong WY; Liu SQ; Dong YM; Gao XJ; Chen XF
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Feb; 50(1):42-48. PubMed ID: 29483720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of ceramic-polymeric hybrid scaffolds for bone regeneration: incorporating of bioactive glass BG-58S into PDLLA matrix.
    Aguiar VCPF; Bezerra RDN; Dos Santos KW; Gonçalves IDS; Costa KJSG; Lauda DP; Campos TMB; do Prado RF; de Vasconcellos LMR; de Oliveira IR
    J Biomater Sci Polym Ed; 2024 Jul; 35(10):1493-1510. PubMed ID: 38569077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering.
    Ding Y; Li W; Müller T; Schubert DW; Boccaccini AR; Yao Q; Roether JA
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17098-108. PubMed ID: 27295496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kaempferol-loaded bioactive glass-based scaffold for bone tissue engineering: in vitro and in vivo evaluation.
    Ranjbar FE; Farzad-Mohajeri S; Samani S; Saremi J; Khademi R; Dehghan MM; Azami M
    Sci Rep; 2023 Jul; 13(1):12375. PubMed ID: 37524784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.
    Shuai C; Huang W; Feng P; Gao C; Shuai X; Xiao T; Deng Y; Peng S; Wu P
    J Biomater Sci Polym Ed; 2016; 27(1):97-109. PubMed ID: 26592544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional zinc incorporated borosilicate bioactive glass scaffolds for rodent critical-sized calvarial defects repair and regeneration.
    Wang H; Zhao S; Xiao W; Cui X; Huang W; Rahaman MN; Zhang C; Wang D
    Colloids Surf B Biointerfaces; 2015 Jun; 130():149-56. PubMed ID: 25912027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive Three-Dimensional Graphene Oxide Foam/Polydimethylsiloxane/Zinc Silicate Scaffolds with Enhanced Osteoinductivity for Bone Regeneration.
    Li Y; Zhang X; Dai C; Yin Y; Gong L; Pan W; Huang R; Bu Y; Liao X; Guo K; Gao F
    ACS Biomater Sci Eng; 2020 May; 6(5):3015-3025. PubMed ID: 33463276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically and physically cross-linked polyvinyl alcohol-borosilicate gel hybrid scaffolds for bone regeneration.
    Pang L; Shen Y; Hu H; Zeng X; Huang W; Gao H; Wang H; Wang D
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110076. PubMed ID: 31546443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation.
    Singh BN; Pramanik K
    Biofabrication; 2017 Mar; 9(1):015028. PubMed ID: 28332482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically conductive borate-based bioactive glass scaffolds for bone tissue engineering applications.
    Turk M; Deliormanlı AM
    J Biomater Appl; 2017 Jul; 32(1):28-39. PubMed ID: 28541125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional nerve guide conduit based on graphene foam/polycaprolactone.
    Bahremandi Tolou N; Salimijazi H; Kharaziha M; Faggio G; Chierchia R; Lisi N
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112110. PubMed ID: 34082932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of mouse bone marrow mesenchymal stem cells to graphene-containing grid-like bioactive glass scaffolds produced by robocasting.
    Deliormanlı AM; Türk M; Atmaca H
    J Biomater Appl; 2018 Oct; 33(4):488-500. PubMed ID: 30249149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.