BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31166063)

  • 1. Inhibition of HER2-Positive Breast Cancer Growth by Blocking the HER2 Signaling Pathway with HER2-Glycan-Imprinted Nanoparticles.
    Dong Y; Li W; Gu Z; Xing R; Ma Y; Zhang Q; Liu Z
    Angew Chem Int Ed Engl; 2019 Jul; 58(31):10621-10625. PubMed ID: 31166063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer-lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells.
    Li J; Xu W; Yuan X; Chen H; Song H; Wang B; Han J
    Int J Nanomedicine; 2017; 12():6909-6921. PubMed ID: 29075110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic anti-tumor activity of Nimotuzumab in combination with Trastuzumab in HER2-positive breast cancer.
    Yang Y; Guo R; Tian X; Zhang Z; Zhang P; Li C; Feng Z
    Biochem Biophys Res Commun; 2017 Aug; 489(4):523-527. PubMed ID: 28579432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo.
    Moulder SL; Yakes FM; Muthuswamy SK; Bianco R; Simpson JF; Arteaga CL
    Cancer Res; 2001 Dec; 61(24):8887-95. PubMed ID: 11751413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell membrane gp96 facilitates HER2 dimerization and serves as a novel target in breast cancer.
    Li X; Sun L; Hou J; Gui M; Ying J; Zhao H; Lv N; Meng S
    Int J Cancer; 2015 Aug; 137(3):512-24. PubMed ID: 25546612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy.
    Wen XF; Yang G; Mao W; Thornton A; Liu J; Bast RC; Le XF
    Oncogene; 2006 Nov; 25(52):6986-96. PubMed ID: 16715132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells.
    Kim J; Lee J; Kim C; Choi J; Kim A
    Tumour Biol; 2016 May; 37(5):5811-9. PubMed ID: 26581908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymalic acid-based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both HER2/neu receptor synthesis and activity.
    Inoue S; Ding H; Portilla-Arias J; Hu J; Konda B; Fujita M; Espinoza A; Suhane S; Riley M; Gates M; Patil R; Penichet ML; Ljubimov AV; Black KL; Holler E; Ljubimova JY
    Cancer Res; 2011 Feb; 71(4):1454-64. PubMed ID: 21303974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo studies of the combination of IGF1R inhibitor figitumumab (CP-751,871) with HER2 inhibitors trastuzumab and neratinib.
    Chakraborty AK; Zerillo C; DiGiovanna MP
    Breast Cancer Res Treat; 2015 Aug; 152(3):533-44. PubMed ID: 26195122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines.
    Kataoka Y; Mukohara T; Shimada H; Saijo N; Hirai M; Minami H
    Ann Oncol; 2010 Feb; 21(2):255-262. PubMed ID: 19633047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer.
    Junutula JR; Flagella KM; Graham RA; Parsons KL; Ha E; Raab H; Bhakta S; Nguyen T; Dugger DL; Li G; Mai E; Lewis Phillips GD; Hiraragi H; Fuji RN; Tibbitts J; Vandlen R; Spencer SD; Scheller RH; Polakis P; Sliwkowski MX
    Clin Cancer Res; 2010 Oct; 16(19):4769-78. PubMed ID: 20805300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing outcomes in HER2-positive breast cancer: the molecular rationale.
    Esteva FJ; Pusztai L
    Oncology (Williston Park); 2005 Nov; 19(13 Suppl 5):5-16. PubMed ID: 19364051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CLEOPATRA: a phase III evaluation of pertuzumab and trastuzumab for HER2-positive metastatic breast cancer.
    Baselga J; Swain SM
    Clin Breast Cancer; 2010 Dec; 10(6):489-91. PubMed ID: 21147694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor.
    Tseng PH; Wang YC; Weng SC; Weng JR; Chen CS; Brueggemeier RW; Shapiro CL; Chen CY; Dunn SE; Pollak M; Chen CS
    Mol Pharmacol; 2006 Nov; 70(5):1534-41. PubMed ID: 16887935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Update on HER-kinase-directed therapy in prostate cancer.
    Gross ME; Jo S; Agus DB
    Clin Adv Hematol Oncol; 2004 Jan; 2(1):53-6, 64. PubMed ID: 16163160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β2-AR signaling controls trastuzumab resistance-dependent pathway.
    Liu D; Yang Z; Wang T; Yang Z; Chen H; Hu Y; Hu C; Guo L; Deng Q; Liu Y; Yu M; Shi M; Du N; Guo N
    Oncogene; 2016 Jan; 35(1):47-58. PubMed ID: 25798840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PI3K-p110α mediates resistance to HER2-targeted therapy in HER2+, PTEN-deficient breast cancers.
    Wang Q; Liu P; Spangle JM; Von T; Roberts TM; Lin NU; Krop IE; Winer EP; Zhao JJ
    Oncogene; 2016 Jul; 35(27):3607-12. PubMed ID: 26500061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib.
    Valabrega G; Capellero S; Cavalloni G; Zaccarello G; Petrelli A; Migliardi G; Milani A; Peraldo-Neia C; Gammaitoni L; Sapino A; Pecchioni C; Moggio A; Giordano S; Aglietta M; Montemurro F
    Breast Cancer Res Treat; 2011 Nov; 130(1):29-40. PubMed ID: 21153051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nordihydroguaiaretic acid (NDGA), an inhibitor of the HER2 and IGF-1 receptor tyrosine kinases, blocks the growth of HER2-overexpressing human breast cancer cells.
    Zavodovskaya M; Campbell MJ; Maddux BA; Shiry L; Allan G; Hodges L; Kushner P; Kerner JA; Youngren JF; Goldfine ID
    J Cell Biochem; 2008 Feb; 103(2):624-35. PubMed ID: 17562544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irreversible inhibition of Δ16HER2 is necessary to suppress Δ16HER2-positive breast carcinomas resistant to Lapatinib.
    Tilio M; Gambini V; Wang J; Garulli C; Kalogris C; Andreani C; Bartolacci C; Elexpuru Zabaleta M; Pietrella L; Hysi A; Iezzi M; Belletti B; Orlando F; Provinciali M; Galeazzi R; Marchini C; Amici A
    Cancer Lett; 2016 Oct; 381(1):76-84. PubMed ID: 27475932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.