These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 31166084)
1. The Application of microRNAs in Biomaterial Scaffold-Based Therapies for Bone Tissue Engineering. Arriaga MA; Ding MH; Gutierrez AS; Chew SA Biotechnol J; 2019 Oct; 14(10):e1900084. PubMed ID: 31166084 [TBL] [Abstract][Full Text] [Related]
2. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Liao YH; Chang YH; Sung LY; Li KC; Yeh CL; Yen TC; Hwang SM; Lin KJ; Hu YC Biomaterials; 2014 Jun; 35(18):4901-10. PubMed ID: 24674465 [TBL] [Abstract][Full Text] [Related]
3. Runx2/DICER/miRNA Pathway in Regulating Osteogenesis. Zheng L; Tu Q; Meng S; Zhang L; Yu L; Song J; Hu Y; Sui L; Zhang J; Dard M; Cheng J; Murray D; Tang Y; Lian JB; Stein GS; Chen J J Cell Physiol; 2017 Jan; 232(1):182-91. PubMed ID: 27064596 [TBL] [Abstract][Full Text] [Related]
4. Harnessing an Inhibitory Role of miR-16 in Osteogenesis by Human Mesenchymal Stem Cells for Advanced Scaffold-Based Bone Tissue Engineering. Mencía Castaño I; Curtin CM; Duffy GP; O'Brien FJ Tissue Eng Part A; 2019 Jan; 25(1-2):24-33. PubMed ID: 29490603 [TBL] [Abstract][Full Text] [Related]
5. Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer. Curtin CM; Castaño IM; O'Brien FJ Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 29068566 [TBL] [Abstract][Full Text] [Related]
6. Biomaterials mediated microRNA delivery for bone tissue engineering. Sriram M; Sainitya R; Kalyanaraman V; Dhivya S; Selvamurugan N Int J Biol Macromol; 2015 Mar; 74():404-12. PubMed ID: 25543062 [TBL] [Abstract][Full Text] [Related]
8. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2]. Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997 [TBL] [Abstract][Full Text] [Related]
9. miR-2861 is involved in osteogenic commitment of human periodontal ligament stem cells grown onto 3D scaffold. Diomede F; Merciaro I; Martinotti S; Cavalcanti MF; Caputi S; Mazzon E; Trubiani O J Biol Regul Homeost Agents; 2016; 30(4):1009-1018. PubMed ID: 28078846 [TBL] [Abstract][Full Text] [Related]
11. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908 [TBL] [Abstract][Full Text] [Related]
12. A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells. Mencía Castaño I; Curtin CM; Shaw G; Murphy JM; Duffy GP; O'Brien FJ J Control Release; 2015 Feb; 200():42-51. PubMed ID: 25550154 [TBL] [Abstract][Full Text] [Related]
13. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway. Ho MH; Yao CJ; Liao MH; Lin PI; Liu SH; Chen RM Int J Nanomedicine; 2015; 10():5941-54. PubMed ID: 26451104 [TBL] [Abstract][Full Text] [Related]
14. The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects. Deng Y; Zhou H; Zou D; Xie Q; Bi X; Gu P; Fan X Biomaterials; 2013 Sep; 34(28):6717-28. PubMed ID: 23768901 [TBL] [Abstract][Full Text] [Related]
15. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration. Shen Y; Yang S; Liu J; Xu H; Shi Z; Lin Z; Ying X; Guo P; Lin T; Yan S; Huang Q; Peng L ACS Appl Mater Interfaces; 2014 Aug; 6(15):12177-88. PubMed ID: 25033438 [TBL] [Abstract][Full Text] [Related]
16. Silk scaffolds in bone tissue engineering: An overview. Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652 [TBL] [Abstract][Full Text] [Related]
18. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. Zuo B; Zhu J; Li J; Wang C; Zhao X; Cai G; Li Z; Peng J; Wang P; Shen C; Huang Y; Xu J; Zhang X; Chen X J Bone Miner Res; 2015 Feb; 30(2):330-45. PubMed ID: 25195535 [TBL] [Abstract][Full Text] [Related]
19. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569 [TBL] [Abstract][Full Text] [Related]
20. Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair. Li J; Jahr H; Zheng W; Ren PG J Vis Exp; 2017 Sep; (127):. PubMed ID: 28930985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]