BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 31166823)

  • 1. How perceptual ambiguity affects response inhibition processes.
    Adelhöfer N; Chmielewski WX; Beste C
    J Neurophysiol; 2019 Aug; 122(2):500-511. PubMed ID: 31166823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus-response recoding during inhibitory control is associated with superior frontal and parahippocampal processes.
    Chmielewski WX; Beste C
    Neuroimage; 2019 Aug; 196():227-236. PubMed ID: 30991125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulus Feature Conflicts Enhance Motor Inhibitory Control Processes in the Lateral Prefrontal Cortex.
    Chmielewski WX; Beste C
    J Cogn Neurosci; 2019 Sep; 31(9):1430-1442. PubMed ID: 31059349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive perceptual learning modulates motor inhibitory control in superior frontal regions.
    Friedrich J; Beste C
    Hum Brain Mapp; 2020 Feb; 41(3):726-738. PubMed ID: 31652018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using temporal EEG signal decomposition to identify specific neurophysiological correlates of distractor-response bindings proposed by the theory of event coding.
    Opitz A; Beste C; Stock AK
    Neuroimage; 2020 Apr; 209():116524. PubMed ID: 31926281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered perception-action binding modulates inhibitory control in Gilles de la Tourette syndrome.
    Petruo V; Bodmer B; Brandt VC; Baumung L; Roessner V; Münchau A; Beste C
    J Child Psychol Psychiatry; 2019 Sep; 60(9):953-962. PubMed ID: 29924402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemispheric asymmetries in the transition from action preparation to execution.
    Sulpizio V; Lucci G; Berchicci M; Galati G; Pitzalis S; Di Russo F
    Neuroimage; 2017 Mar; 148():390-402. PubMed ID: 28069542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neurophysiological basis of developmental changes during sequential cognitive flexibility between adolescents and adults.
    Giller F; Zhang R; Roessner V; Beste C
    Hum Brain Mapp; 2019 Feb; 40(2):552-565. PubMed ID: 30240511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of anticipatory cardiac deceleration and its association with the speed of perceptual decision-making, in young and older adults.
    Ribeiro MJ; Castelo-Branco M
    Neuroimage; 2019 Oct; 199():521-533. PubMed ID: 31173904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paradoxical response inhibition advantages in adolescent obsessive compulsive disorder result from the interplay of automatic and controlled processes.
    Wolff N; Chmielewski W; Buse J; Roessner V; Beste C
    Neuroimage Clin; 2019; 23():101893. PubMed ID: 31220759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using principal components analysis to examine resting state EEG in relation to task performance.
    Karamacoska D; Barry RJ; Steiner GZ
    Psychophysiology; 2019 May; 56(5):e13327. PubMed ID: 30613986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-Hemispheric Complementary Prefrontal Mechanisms during Task Switching under Perceptual Uncertainty.
    Tsumura K; Aoki R; Takeda M; Nakahara K; Jimura K
    J Neurosci; 2021 Mar; 41(10):2197-2213. PubMed ID: 33468569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry - Implications for the norepinephrine system during inhibitory control.
    Dippel G; Mückschel M; Ziemssen T; Beste C
    Neuroimage; 2017 Aug; 157():575-585. PubMed ID: 28647483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-ERP dynamics in a visual Continuous Performance Test.
    Karamacoska D; Barry RJ; De Blasio FM; Steiner GZ
    Int J Psychophysiol; 2019 Dec; 146():249-260. PubMed ID: 31648022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceptual load in decision making: The role of anterior insula and visual areas. An ERP study.
    Perri RL; Berchicci M; Bianco V; Quinzi F; Spinelli D; Di Russo F
    Neuropsychologia; 2019 Jun; 129():65-71. PubMed ID: 30902649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response selection codes in neurophysiological data predict conjoint effects of controlled and automatic processes during response inhibition.
    Chmielewski WX; Mückschel M; Beste C
    Hum Brain Mapp; 2018 Apr; 39(4):1839-1849. PubMed ID: 29334155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands.
    Chmielewski WX; Mückschel M; Ziemssen T; Beste C
    Hum Brain Mapp; 2017 Jan; 38(1):68-81. PubMed ID: 27519546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of mental workload on inhibitory control subprocesses.
    Chmielewski WX; Mückschel M; Stock AK; Beste C
    Neuroimage; 2015 May; 112():96-104. PubMed ID: 25754069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of target probability on pre-stimulus brain activity.
    Lucci G; Berchicci M; Perri RL; Spinelli D; Di Russo F
    Neuroscience; 2016 May; 322():121-8. PubMed ID: 26912279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the dependence of response inhibition processes on sensory modality.
    Bodmer B; Beste C
    Hum Brain Mapp; 2017 Apr; 38(4):1941-1951. PubMed ID: 28045223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.