BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 31166823)

  • 21. Spatiotemporal brain mapping during preparation, perception, and action.
    Di Russo F; Lucci G; Sulpizio V; Berchicci M; Spinelli D; Pitzalis S; Galati G
    Neuroimage; 2016 Feb; 126():1-14. PubMed ID: 26608247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perceptual conflict during sensorimotor integration processes - a neurophysiological study in response inhibition.
    Chmielewski WX; Beste C
    Sci Rep; 2016 May; 6():26289. PubMed ID: 27222225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decomposing decision components in the stop-signal task: a model-based approach to individual differences in inhibitory control.
    White CN; Congdon E; Mumford JA; Karlsgodt KH; Sabb FW; Freimer NB; London ED; Cannon TD; Bilder RM; Poldrack RA
    J Cogn Neurosci; 2014 Aug; 26(8):1601-14. PubMed ID: 24405185
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Somatosensory lateral inhibition processes modulate motor response inhibition - an EEG source localization study.
    Friedrich J; Mückschel M; Beste C
    Sci Rep; 2017 Jun; 7(1):4454. PubMed ID: 28667296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Why do we make mistakes? Neurocognitive processes during the preparation-perception-action cycle and error-detection.
    Perri RL; Berchicci M; Lucci G; Spinelli D; Di Russo F
    Neuroimage; 2015 Jun; 113():320-8. PubMed ID: 25812715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetoencephalographic signatures of right prefrontal cortex involvement in response inhibition.
    Hege MA; Preissl H; Stingl KT
    Hum Brain Mapp; 2014 Oct; 35(10):5236-48. PubMed ID: 24845057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of fetal alcohol syndrome on response execution and inhibition: an event-related potential study.
    Burden MJ; Andrew C; Saint-Amour D; Meintjes EM; Molteno CD; Hoyme HE; Robinson LK; Khaole N; Nelson CA; Jacobson JL; Jacobson SW
    Alcohol Clin Exp Res; 2009 Nov; 33(11):1994-2004. PubMed ID: 19719791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pre-trial theta band activity in the ventromedial prefrontal cortex correlates with inhibition-related theta band activity in the right inferior frontal cortex.
    Adelhöfer N; Beste C
    Neuroimage; 2020 Oct; 219():117052. PubMed ID: 32540357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Attention-related modulation of frontal midline theta oscillations in cingulate cortex during a spatial cueing Go/NoGo task.
    Hong X; Sun J; Wang J; Li C; Tong S
    Int J Psychophysiol; 2020 Feb; 148():1-12. PubMed ID: 31857191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perceptual Uncertainty Alternates Top-down and Bottom-up Fronto-Temporal Network Signaling during Response Inhibition.
    Tsumura K; Shintaki R; Takeda M; Chikazoe J; Nakahara K; Jimura K
    J Neurosci; 2022 Jun; 42(22):4567-4579. PubMed ID: 35501155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resting state intrinsic EEG impacts on go stimulus-response processes.
    Karamacoska D; Barry RJ; Steiner GZ
    Psychophysiology; 2017 Jun; 54(6):894-903. PubMed ID: 28258583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The system neurophysiological basis of non-adaptive cognitive control: Inhibition of implicit learning mediated by right prefrontal regions.
    Stock AK; Steenbergen L; Colzato L; Beste C
    Hum Brain Mapp; 2016 Dec; 37(12):4511-4522. PubMed ID: 27477001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Testing interactive effects of automatic and conflict control processes during response inhibition - A system neurophysiological study.
    Chmielewski WX; Beste C
    Neuroimage; 2017 Feb; 146():1149-1156. PubMed ID: 27742599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The norepinephrine system and its relevance for multi-component behavior.
    Mückschel M; Gohil K; Ziemssen T; Beste C
    Neuroimage; 2017 Feb; 146():1062-1070. PubMed ID: 27720820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Turning down the heat: Neural mechanisms of cognitive control for inhibiting task-irrelevant emotional information during adolescence.
    Banich MT; Smolker HR; Snyder HR; Lewis-Peacock JA; Godinez DA; Wager TD; Hankin BL
    Neuropsychologia; 2019 Mar; 125():93-108. PubMed ID: 30615898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of perceptual decisions about symmetry in visual cortex.
    Kohler PJ; Cottereau BR; Norcia AM
    Neuroimage; 2018 Feb; 167():316-330. PubMed ID: 29175495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of the lateral prefrontal cortex in inhibitory motor control.
    Krämer UM; Solbakk AK; Funderud I; Løvstad M; Endestad T; Knight RT
    Cortex; 2013 Mar; 49(3):837-49. PubMed ID: 22699024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutual influence between emotional language and inhibitory control processes. Evidence from an event-related potential study.
    Agudelo-Orjuela P; de Vega M; Beltrán D
    Psychophysiology; 2021 Mar; 58(3):e13743. PubMed ID: 33278304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numbers in action during cognitive flexibility - A neurophysiological approach on numerical operations underlying task switching.
    Petruo VA; Mückschel M; Beste C
    Cortex; 2019 Nov; 120():101-115. PubMed ID: 31299496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.