BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31166951)

  • 1. TGF-β induces liver fibrosis via miRNA-181a-mediated down regulation of augmenter of liver regeneration in hepatic stellate cells.
    Gupta P; Sata TN; Yadav AK; Mishra A; Vats N; Hossain MM; Sanal MG; Venugopal SK
    PLoS One; 2019; 14(6):e0214534. PubMed ID: 31166951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficiency in augmenter of liver regeneration accelerates liver fibrosis by promoting migration of hepatic stellate cell.
    Ai WL; Dong LY; Wang J; Li ZW; Wang X; Gao J; Wu Y; An W
    Biochim Biophys Acta Mol Basis Dis; 2018 Nov; 1864(11):3780-3791. PubMed ID: 30251695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hes1, an important gene for activation of hepatic stellate cells, is regulated by Notch1 and TGF-β/BMP signaling.
    Zhang K; Zhang YQ; Ai WB; Hu QT; Zhang QJ; Wan LY; Wang XL; Liu CB; Wu JF
    World J Gastroenterol; 2015 Jan; 21(3):878-87. PubMed ID: 25624721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suberoylanilide Hydroxamic Acid (SAHA) Reduces Fibrosis Markers and Deactivates Human Stellate Cells via the Epithelial-Mesenchymal Transition (EMT).
    Özel M; Baskol M; Akalın H; Baskol G
    Cell Biochem Biophys; 2021 Jun; 79(2):349-357. PubMed ID: 33689126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gremlin1 Accelerates Hepatic Stellate Cell Activation Through Upregulation of TGF-Beta Expression.
    Zhang YQ; Wan LY; He XM; Ni YR; Wang C; Liu CB; Wu JF
    DNA Cell Biol; 2017 Jul; 36(7):603-610. PubMed ID: 28467108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methyl ferulic acid attenuates liver fibrosis and hepatic stellate cell activation through the TGF-β1/Smad and NOX4/ROS pathways.
    Cheng Q; Li C; Yang CF; Zhong YJ; Wu D; Shi L; Chen L; Li YW; Li L
    Chem Biol Interact; 2019 Feb; 299():131-139. PubMed ID: 30543783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Epigenetically-Regulated microRNA-378a Targets TGF-β2 in TGF-β1-Treated Hepatic Stellate Cells.
    Yu F; Yang J; Huang K; Pan X; Chen B; Dong P; Zheng J
    Cell Physiol Biochem; 2016; 40(1-2):183-194. PubMed ID: 27855367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-146a-5p Attenuates Fibrosis-related Molecules in Irradiated and TGF-beta1-Treated Human Hepatic Stellate Cells by Regulating PTPRA-SRC Signaling.
    Yuan BY; Chen YH; Wu ZF; Zhuang Y; Chen GW; Zhang L; Zhang HG; Cheng JC; Lin Q; Zeng ZC
    Radiat Res; 2019 Dec; 192(6):621-629. PubMed ID: 31560641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periostin down-regulation attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1.
    Hong L; Shejiao D; Fenrong C; Gang Z; Lei D
    J Cell Mol Med; 2015 Oct; 19(10):2462-8. PubMed ID: 26249143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation.
    Venugopal SK; Jiang J; Kim TH; Li Y; Wang SS; Torok NJ; Wu J; Zern MA
    Am J Physiol Gastrointest Liver Physiol; 2010 Jan; 298(1):G101-6. PubMed ID: 19892940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis.
    Roy S; Benz F; Vargas Cardenas D; Vucur M; Gautheron J; Schneider A; Hellerbrand C; Pottier N; Alder J; Tacke F; Trautwein C; Roderburg C; Luedde T
    J Dig Dis; 2015 Sep; 16(9):513-24. PubMed ID: 26120970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-30a ameliorates hepatic fibrosis by inhibiting Beclin1-mediated autophagy.
    Chen J; Yu Y; Li S; Liu Y; Zhou S; Cao S; Yin J; Li G
    J Cell Mol Med; 2017 Dec; 21(12):3679-3692. PubMed ID: 28766848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liuweiwuling tablets attenuate BDL-induced hepatic fibrosis via modulation of TGF-β/Smad and NF-κB signaling pathways.
    Liu H; Dong F; Li G; Niu M; Zhang C; Han Y; He L; Yin P; Wang B; Sang X; Li R; Wang J; Bai Z; Xiao X
    J Ethnopharmacol; 2018 Jan; 210():232-241. PubMed ID: 28864168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells.
    Li ZJ; Ou-Yang PH; Han XP
    Cell Signal; 2014 Jan; 26(1):141-8. PubMed ID: 24100264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saikosaponin A of Bupleurum chinense (Chaihu) elevates bone morphogenetic protein 4 (BMP-4) during hepatic stellate cell activation.
    Wang X; Wang Q; Burczynski FJ; Kong W; Gong Y
    Phytomedicine; 2013 Nov; 20(14):1330-5. PubMed ID: 23969230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thymosin β4 suppresses CCl
    Li H; Li Q; Zhang X; Zheng X; Zhang Q; Hao Z
    J Gene Med; 2018 Sep; 20(9):e3043. PubMed ID: 29972714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. linc-SCRG1 accelerates liver fibrosis by decreasing RNA-binding protein tristetraprolin.
    Wu JC; Luo SZ; Liu T; Lu LG; Xu MY
    FASEB J; 2019 Feb; 33(2):2105-2115. PubMed ID: 30226813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mistletoe alkaloid fractions alleviates carbon tetrachloride-induced liver fibrosis through inhibition of hepatic stellate cell activation via TGF-β/Smad interference.
    Jiang Y; Wang C; Li YY; Wang XC; An JD; Wang YJ; Wang XJ
    J Ethnopharmacol; 2014 Dec; 158 Pt A():230-8. PubMed ID: 25456431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dicliptera Chinensis polysaccharides target TGF-β/Smad pathway and inhibit stellate cells activation in rats with dimethylnitrosamine-induced hepatic fibrosis.
    Zhang X; Zhang J; Jia L; Xiao S
    Cell Mol Biol (Noisy-le-grand); 2016 Jan; 62(1):99-103. PubMed ID: 26828995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diethylcarbamazine attenuates the expression of pro-fibrogenic markers and hepatic stellate cells activation in carbon tetrachloride-induced liver fibrosis.
    França MER; Rocha SWS; Oliveira WH; Santos LA; de Oliveira AGV; Barbosa KPS; Nunes AKS; Rodrigues GB; Lós DB; Peixoto CA
    Inflammopharmacology; 2018 Apr; 26(2):599-609. PubMed ID: 28409388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.