These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 3116727)

  • 1. Higher control mechanisms of saccadic eye movements.
    Kennard C
    Trans Ophthalmol Soc U K (1962); 1986; 105 ( Pt 6)():705-8. PubMed ID: 3116727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms underlying target selection with saccadic eye movements.
    Schiller PH; Tehovnik EJ
    Prog Brain Res; 2005; 149():157-71. PubMed ID: 16226583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of substantia nigra pars reticulata neurons during smooth pursuit eye movements in monkeys.
    Basso MA; Pokorny JJ; Liu P
    Eur J Neurosci; 2005 Jul; 22(2):448-64. PubMed ID: 16045498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commentary: saccadic eye movements: overview of neural circuitry.
    Munoz DP
    Prog Brain Res; 2002; 140():89-96. PubMed ID: 12508584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of the saccade-generating system that accounts for trajectory variations produced by competing visual stimuli.
    Arai K; Keller EL
    Biol Cybern; 2005 Jan; 92(1):21-37. PubMed ID: 15650897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of basal ganglia in saccades.
    Hikosaka O
    Rev Neurol (Paris); 1989; 145(8-9):580-6. PubMed ID: 2814160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocular motor abnormalities in Huntington's disease.
    Lasker AG; Zee DS
    Vision Res; 1997 Dec; 37(24):3639-45. PubMed ID: 9425536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural basis of visually guided head movements studied with fMRI.
    Petit L; Beauchamp MS
    J Neurophysiol; 2003 May; 89(5):2516-27. PubMed ID: 12611944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates.
    Johnston K; Everling S
    Brain Cogn; 2008 Dec; 68(3):271-83. PubMed ID: 18940273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recasting the smooth pursuit eye movement system.
    Krauzlis RJ
    J Neurophysiol; 2004 Feb; 91(2):591-603. PubMed ID: 14762145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Control of visual exploration: anatomic and physiologic data].
    Mauguiere F
    J Fr Ophtalmol; 1985; 8(12):803-12. PubMed ID: 3938788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccadic eye movements in frontal lesion and posthemispherectomy in humans. An electro-oculographic study.
    Bogacz J; Bottinelli MD; Pebet M; Bogacz A
    Acta Neurol Latinoam; 1981; 27(1-2):61-74. PubMed ID: 6965170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the human dorsolateral prefrontal cortex in ocular motor behavior.
    Pierrot-Deseilligny Ch; Müri RM; Nyffeler T; Milea D
    Ann N Y Acad Sci; 2005 Apr; 1039():239-51. PubMed ID: 15826978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontal eye field signals that may trigger the brainstem saccade generator.
    Keller EL; Lee BT; Lee KM
    Prog Brain Res; 2008; 171():107-14. PubMed ID: 18718288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of reflexive attention and eye movements in an individual with a collicular lesion.
    Sereno AB; Briand KA; Amador SC; Szapiel SV
    J Clin Exp Neuropsychol; 2006 Jan; 28(1):145-66. PubMed ID: 16448982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The characteristics and neuronal substrate of saccadic eye movement plasticity.
    Hopp JJ; Fuchs AF
    Prog Neurobiol; 2004 Jan; 72(1):27-53. PubMed ID: 15019175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target selection by the frontal cortex during coordinated saccadic and smooth pursuit eye movements.
    Srihasam K; Bullock D; Grossberg S
    J Cogn Neurosci; 2009 Aug; 21(8):1611-27. PubMed ID: 18823247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context-dependent effects of substantia nigra stimulation on eye movements.
    Basso MA; Liu P
    J Neurophysiol; 2007 Jun; 97(6):4129-42. PubMed ID: 17392414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades.
    Brown JW; Bullock D; Grossberg S
    Neural Netw; 2004 May; 17(4):471-510. PubMed ID: 15109680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of superior colliculus in adaptive eye-head coordination during gaze shifts.
    Constantin AG; Wang H; Crawford JD
    J Neurophysiol; 2004 Oct; 92(4):2168-84. PubMed ID: 15190087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.