BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1185 related articles for article (PubMed ID: 31167452)

  • 1. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of supervised machine-learning algorithms to distinguish between inflammatory bowel disease and alimentary lymphoma in cats.
    Awaysheh A; Wilcke J; Elvinger F; Rees L; Fan W; Zimmerman KL
    J Vet Diagn Invest; 2016 Nov; 28(6):679-687. PubMed ID: 27698168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying novel transcript biomarkers for hepatocellular carcinoma (HCC) using RNA-Seq datasets and machine learning.
    Gupta R; Kleinjans J; Caiment F
    BMC Cancer; 2021 Aug; 21(1):962. PubMed ID: 34445986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive Molecule Prediction Using Extreme Gradient Boosting.
    Babajide Mustapha I; Saeed F
    Molecules; 2016 Jul; 21(8):. PubMed ID: 27483216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters.
    Peng K; Tang Z; Dong L; Sun D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing Value and Outliers.
    Maniruzzaman M; Rahman MJ; Al-MehediHasan M; Suri HS; Abedin MM; El-Baz A; Suri JS
    J Med Syst; 2018 Apr; 42(5):92. PubMed ID: 29637403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fetal health status prediction based on maternal clinical history using machine learning techniques.
    Akbulut A; Ertugrul E; Topcu V
    Comput Methods Programs Biomed; 2018 Sep; 163():87-100. PubMed ID: 30119860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing different supervised machine learning algorithms for disease prediction.
    Uddin S; Khan A; Hossain ME; Moni MA
    BMC Med Inform Decis Mak; 2019 Dec; 19(1):281. PubMed ID: 31864346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-learning techniques for the prediction of protein-protein interactions.
    Sarkar D; Saha S
    J Biosci; 2019 Sep; 44(4):. PubMed ID: 31502581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing machine learning algorithms to predict subject genetic mutation class from in silico models of neuronal networks.
    Kress GT; Chan F; Garcia CA; Merrifield WS
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):290. PubMed ID: 36352381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Prognosis in Nasopharyngeal Cancer Using Machine Learning.
    Akcay M; Etiz D; Celik O; Ozen A
    Technol Cancer Res Treat; 2020; 19():1533033820909829. PubMed ID: 32138606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active learning using deep Bayesian networks for surgical workflow analysis.
    Bodenstedt S; Rivoir D; Jenke A; Wagner M; Breucha M; Müller-Stich B; Mees ST; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):1079-1087. PubMed ID: 30968355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma.
    Alkhadar H; Macluskey M; White S; Ellis I; Gardner A
    J Oral Pathol Med; 2021 Apr; 50(4):378-384. PubMed ID: 33220109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data.
    Saccà V; Sarica A; Novellino F; Barone S; Tallarico T; Filippelli E; Granata A; Chiriaco C; Bruno Bossio R; Valentino P; Quattrone A
    Brain Imaging Behav; 2019 Aug; 13(4):1103-1114. PubMed ID: 29992392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 60.