These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Fast network centrality analysis using GPUs. Shi Z; Zhang B BMC Bioinformatics; 2011 May; 12():149. PubMed ID: 21569426 [TBL] [Abstract][Full Text] [Related]
4. The parallel computing of node centrality based on GPU. Yin S; Hu Y; Ren Y Math Biosci Eng; 2022 Jan; 19(3):2700-2719. PubMed ID: 35240802 [TBL] [Abstract][Full Text] [Related]
5. Distributed MLEM: an iterative tomographic image reconstruction algorithm for distributed memory architectures. Cui J; Pratx G; Meng B; Levin CS IEEE Trans Med Imaging; 2013 May; 32(5):957-67. PubMed ID: 23529079 [TBL] [Abstract][Full Text] [Related]
6. Performance evaluation of image processing algorithms on the GPU. Castaño-Díez D; Moser D; Schoenegger A; Pruggnaller S; Frangakis AS J Struct Biol; 2008 Oct; 164(1):153-60. PubMed ID: 18692140 [TBL] [Abstract][Full Text] [Related]
7. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction. Chou CY; Chuo YY; Hung Y; Wang W Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004 [TBL] [Abstract][Full Text] [Related]
8. Accelerated parallel algorithm for gene network reverse engineering. He J; Zhou Z; Reed M; Califano A BMC Syst Biol; 2017 Sep; 11(Suppl 4):83. PubMed ID: 28950860 [TBL] [Abstract][Full Text] [Related]
9. A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks. Frasca M; Grossi G; Gliozzo J; Mesiti M; Notaro M; Perlasca P; Petrini A; Valentini G BMC Bioinformatics; 2018 Oct; 19(Suppl 10):353. PubMed ID: 30367594 [TBL] [Abstract][Full Text] [Related]
10. Centrality-based pathway enrichment: a systematic approach for finding significant pathways dominated by key genes. Gu Z; Liu J; Cao K; Zhang J; Wang J BMC Syst Biol; 2012 Jun; 6():56. PubMed ID: 22672776 [TBL] [Abstract][Full Text] [Related]
11. Fast computing betweenness centrality with virtual nodes on large sparse networks. Yang J; Chen Y PLoS One; 2011; 6(7):e22557. PubMed ID: 21818337 [TBL] [Abstract][Full Text] [Related]
12. Improved collective influence of finding most influential nodes based on disjoint-set reinsertion. Zhu F Sci Rep; 2018 Sep; 8(1):14503. PubMed ID: 30266910 [TBL] [Abstract][Full Text] [Related]
13. Anti-triangle centrality-based community detection in complex networks. Jia S; Gao L; Gao Y; Wang H IET Syst Biol; 2014 Jun; 8(3):116-25. PubMed ID: 25014378 [TBL] [Abstract][Full Text] [Related]
14. A scalable multi-signal approach for the parallelization of self-organizing neural networks. Musci M; Parigi G; Cantoni V; Piastra M Neural Netw; 2020 Mar; 123():108-117. PubMed ID: 31838325 [TBL] [Abstract][Full Text] [Related]
15. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy. Samant SS; Xia J; Muyan-Ozcelik P; Owens JD Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915 [TBL] [Abstract][Full Text] [Related]
16. TurboBC: A Memory Efficient and Scalable GPU Based Betweenness Centrality Algorithm in the Language of Linear Algebra. Artiles O; Saeed F Proc Int Workshops Parallel Proc; 2021 Aug; 2021():. PubMed ID: 35440894 [TBL] [Abstract][Full Text] [Related]
17. Fully 3D iterative scatter-corrected OSEM for HRRT PET using a GPU. Kim KS; Ye JC Phys Med Biol; 2011 Aug; 56(15):4991-5009. PubMed ID: 21772080 [TBL] [Abstract][Full Text] [Related]
18. A GPU-accelerated algorithm for biclustering analysis and detection of condition-dependent coexpression network modules. Bhattacharya A; Cui Y Sci Rep; 2017 Jun; 7(1):4162. PubMed ID: 28646174 [TBL] [Abstract][Full Text] [Related]
20. On Dynamic Scheduling for the GPU and its Applications in Computer Graphics and Beyond. Steinberger M IEEE Comput Graph Appl; 2018 May; 38(3):119-130. PubMed ID: 29877807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]