These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Efficient sequential and parallel algorithms for finding edit distance based motifs. Pal S; Xiao P; Rajasekaran S BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):465. PubMed ID: 27557423 [TBL] [Abstract][Full Text] [Related]
5. Where No Universal Health Care Identifier Exists: Comparison and Determination of the Utility of Score-Based Persons Matching Algorithms Using Demographic Data. Waruru A; Natukunda A; Nyagah LM; Kellogg TA; Zielinski-Gutierrez E; Waruiru W; Masamaro K; Harklerode R; Odhiambo J; Manders EJ; Young PW JMIR Public Health Surveill; 2018 Dec; 4(4):e10436. PubMed ID: 30545805 [TBL] [Abstract][Full Text] [Related]
6. An efficient rank based approach for closest string and closest substring. Dinu LP; Ionescu R PLoS One; 2012; 7(6):e37576. PubMed ID: 22675483 [TBL] [Abstract][Full Text] [Related]
7. Secure approximation of edit distance on genomic data. Aziz MMA; Alhadidi D; Mohammed N BMC Med Genomics; 2017 Jul; 10(Suppl 2):41. PubMed ID: 28786362 [TBL] [Abstract][Full Text] [Related]
8. libFLASM: a software library for fixed-length approximate string matching. Ayad LA; Pissis SP; Retha A BMC Bioinformatics; 2016 Nov; 17(1):454. PubMed ID: 27832739 [TBL] [Abstract][Full Text] [Related]
9. Fast exact algorithms for the closest string and substring problems with application to the planted (L, d)-motif model. Chen ZZ; Wang L IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1400-10. PubMed ID: 21282867 [TBL] [Abstract][Full Text] [Related]
10. Interpreting Sequence-Levenshtein distance for determining error type and frequency between two embedded sequences of equal length. Logan R; Wehe AW; Woods DC; Tilly J; Khrapko K ArXiv; 2023 Oct; ():. PubMed ID: 37904736 [TBL] [Abstract][Full Text] [Related]
11. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations. Ho T; Oh SR; Kim H PLoS One; 2017; 12(10):e0186251. PubMed ID: 29016700 [TBL] [Abstract][Full Text] [Related]
12. Efficient edit distance with duplications and contractions. Pinhas T; Zakov S; Tsur D; Ziv-Ukelson M Algorithms Mol Biol; 2013 Oct; 8(1):27. PubMed ID: 24168705 [TBL] [Abstract][Full Text] [Related]
13. A normalized Levenshtein distance metric. Yujian L; Bo L IEEE Trans Pattern Anal Mach Intell; 2007 Jun; 29(6):1091-5. PubMed ID: 17431306 [TBL] [Abstract][Full Text] [Related]
14. Analysis and safety engineering of fuzzy string matching algorithms. Pikies M; Ali J ISA Trans; 2021 Jul; 113():1-8. PubMed ID: 33092862 [TBL] [Abstract][Full Text] [Related]
15. A fast algorithm for the optimal alignment of three strings. Allison L J Theor Biol; 1993 Sep; 164(2):261-9. PubMed ID: 8246519 [TBL] [Abstract][Full Text] [Related]
16. Closest string with outliers. Boucher C; Ma B BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S55. PubMed ID: 21342588 [TBL] [Abstract][Full Text] [Related]
17. Encoded expansion: an efficient algorithm to discover identical string motifs. Azmi AM; Al-Ssulami A PLoS One; 2014; 9(5):e95148. PubMed ID: 24871320 [TBL] [Abstract][Full Text] [Related]
19. Hardware-Algorithm Codesign for Fast and Energy Efficient Approximate String Matching on FPGA for Computational Biology. Gudur VY; Maheshwari S; Bhardwaj S; Acharyya A; Shafik R Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():87-90. PubMed ID: 36086088 [TBL] [Abstract][Full Text] [Related]
20. Approximate Graph Edit Distance in Quadratic Time. Riesen K; Ferrer M; Bunke H IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):483-494. PubMed ID: 26390496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]