BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31167903)

  • 21. Magnetization of the sulfite and nitrite complexes of oxidized sulfite and nitrite reductases: EPR silent spin S = 1/2 states.
    Day EP; Peterson J; Bonvoisin JJ; Young LJ; Wilkerson JO; Siegel LM
    Biochemistry; 1988 Mar; 27(6):2126-32. PubMed ID: 2837283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of conserved tyrosine 343 in intramolecular electron transfer in human sulfite oxidase.
    Feng C; Wilson HL; Hurley JK; Hazzard JT; Tollin G; Rajagopalan KV; Enemark JH
    J Biol Chem; 2003 Jan; 278(5):2913-20. PubMed ID: 12424234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective.
    Maia LB
    Molecules; 2023 Aug; 28(15):. PubMed ID: 37570788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the magnitude and mechanism of aldehyde oxidase-mediated nitric oxide production from nitrite.
    Li H; Kundu TK; Zweier JL
    J Biol Chem; 2009 Dec; 284(49):33850-8. PubMed ID: 19801639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity.
    Zhang Z; Naughton D; Winyard PG; Benjamin N; Blake DR; Symons MC
    Biochem Biophys Res Commun; 1998 Aug; 249(3):767-72. PubMed ID: 9731211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione.
    Bien M; Longen S; Wagener N; Chwalla I; Herrmann JM; Riemer J
    Mol Cell; 2010 Feb; 37(4):516-28. PubMed ID: 20188670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space.
    Neal SE; Dabir DV; Wijaya J; Boon C; Koehler CM
    Mol Biol Cell; 2017 Oct; 28(21):2773-2785. PubMed ID: 28814504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural insights into sulfite oxidase deficiency.
    Karakas E; Wilson HL; Graf TN; Xiang S; Jaramillo-Busquets S; Rajagopalan KV; Kisker C
    J Biol Chem; 2005 Sep; 280(39):33506-15. PubMed ID: 16048997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrite reduction. Evaluation of its role in nitric oxide generation in anoxic tissues.
    Li H; Samouilov A; Liu X; Zweier JL
    J Biol Chem; 2001 Jul; 276(27):24482-9. PubMed ID: 11312267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondria recycle nitrite back to the bioregulator nitric monoxide.
    Nohl H; Staniek K; Sobhian B; Bahrami S; Redl H; Kozlov AV
    Acta Biochim Pol; 2000; 47(4):913-21. PubMed ID: 11996114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774)--a heterooligomer heme protein with sulfite reductase activity.
    Pereira IC; Abreu IA; Xavier AV; LeGall J; Teixeira M
    Biochem Biophys Res Commun; 1996 Jul; 224(3):611-8. PubMed ID: 8713097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of complexes between Escherichia coli sulfite reductase hemoprotein subunit and its substrates sulfite and nitrite.
    Janick PA; Rueger DC; Krueger RJ; Barber MJ; Siegel LM
    Biochemistry; 1983 Jan; 22(2):396-408. PubMed ID: 6297547
    [No Abstract]   [Full Text] [Related]  

  • 33. The 1.2 A structure of the human sulfite oxidase cytochrome b(5) domain.
    Rudolph MJ; Johnson JL; Rajagopalan KV; Kisker C
    Acta Crystallogr D Biol Crystallogr; 2003 Jul; 59(Pt 7):1183-91. PubMed ID: 12832761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Liposome and Cardiolipin on Folding and Function of Mitochondrial Erv1.
    Tang X; Harris LK; Lu H
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33321986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the role of a conserved salt bridge in the intramolecular electron transfer kinetics of human sulfite oxidase.
    Johnson-Winters K; Davis AC; Arnold AR; Berry RE; Tollin G; Enemark JH
    J Biol Inorg Chem; 2013 Aug; 18(6):645-53. PubMed ID: 23779234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A voltammetric study of interdomain electron transfer within sulfite oxidase.
    Elliott SJ; McElhaney AE; Feng C; Enemark JH; Armstrong FA
    J Am Chem Soc; 2002 Oct; 124(39):11612-3. PubMed ID: 12296723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytochrome c oxidase rapidly metabolises nitric oxide to nitrite.
    Torres J; Sharpe MA; Rosquist A; Cooper CE; Wilson MT
    FEBS Lett; 2000 Jun; 475(3):263-6. PubMed ID: 10869568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfite reduction in mycobacteria.
    Pinto R; Harrison JS; Hsu T; Jacobs WR; Leyh TS
    J Bacteriol; 2007 Sep; 189(18):6714-22. PubMed ID: 17644602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases.
    Maia LB; Moura JJ
    J Biol Inorg Chem; 2015 Mar; 20(2):403-33. PubMed ID: 25589250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The crystal structure of plant sulfite oxidase provides insights into sulfite oxidation in plants and animals.
    Schrader N; Fischer K; Theis K; Mendel RR; Schwarz G; Kisker C
    Structure; 2003 Oct; 11(10):1251-63. PubMed ID: 14527393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.