These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 31168073)

  • 1. Opportunities and challenges for nanotechnology in the agri-tech revolution.
    Lowry GV; Avellan A; Gilbertson LM
    Nat Nanotechnol; 2019 Jun; 14(6):517-522. PubMed ID: 31168073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative plant breeding could deliver crop revolution.
    Anders S; Pareek A; Singla-Pareek SL; Gupta KJ; Foyer CH
    Nature; 2020 Jan; 577(7792):622. PubMed ID: 31992889
    [No Abstract]   [Full Text] [Related]  

  • 3. Nano-enabled strategies to enhance crop nutrition and protection.
    Kah M; Tufenkji N; White JC
    Nat Nanotechnol; 2019 Jun; 14(6):532-540. PubMed ID: 31168071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic strategies for improving crop yields.
    Bailey-Serres J; Parker JE; Ainsworth EA; Oldroyd GED; Schroeder JI
    Nature; 2019 Nov; 575(7781):109-118. PubMed ID: 31695205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora.
    Achari GA; Kowshik M
    J Agric Food Chem; 2018 Aug; 66(33):8647-8661. PubMed ID: 30036480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First adaptation of quinoa in the Bhutanese mountain agriculture systems.
    Katwal TB; Bazile D
    PLoS One; 2020; 15(1):e0219804. PubMed ID: 31945062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Egypt: Space to grow.
    Sarant L
    Nature; 2017 Apr; 544(7651):S14-S16. PubMed ID: 28445452
    [No Abstract]   [Full Text] [Related]  

  • 8. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture.
    Zhang P; Guo Z; Ullah S; Melagraki G; Afantitis A; Lynch I
    Nat Plants; 2021 Jul; 7(7):864-876. PubMed ID: 34168318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospects of orphan crops in climate change.
    Mabhaudhi T; Chimonyo VGP; Hlahla S; Massawe F; Mayes S; Nhamo L; Modi AT
    Planta; 2019 Sep; 250(3):695-708. PubMed ID: 30868238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green biotechnology, nanotechnology and bio-fortification: perspectives on novel environment-friendly crop improvement strategies.
    Yashveer S; Singh V; Kaswan V; Kaushik A; Tokas J
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):113-26. PubMed ID: 25598358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofertilizer use for sustainable agriculture: Advantages and limitations.
    Zulfiqar F; Navarro M; Ashraf M; Akram NA; Munné-Bosch S
    Plant Sci; 2019 Dec; 289():110270. PubMed ID: 31623775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate resilient crops for improving global food security and safety.
    Dhankher OP; Foyer CH
    Plant Cell Environ; 2018 May; 41(5):877-884. PubMed ID: 29663504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crop Diversity: An Unexploited Treasure Trove for Food Security.
    Massawe F; Mayes S; Cheng A
    Trends Plant Sci; 2016 May; 21(5):365-368. PubMed ID: 27131298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Nanotechnology in Plant Growth and Crop Protection: A Review.
    Shang Y; Hasan MK; Ahammed GJ; Li M; Yin H; Zhou J
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31337070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How can we improve crop genotypes to increase stress resilience and productivity in a future climate? A new crop screening method based on productivity and resistance to abiotic stress.
    Thiry AA; Chavez Dulanto PN; Reynolds MP; Davies WJ
    J Exp Bot; 2016 Oct; 67(19):5593-5603. PubMed ID: 27677299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production.
    Fu L; Wang Z; Dhankher OP; Xing B
    J Exp Bot; 2020 Jan; 71(2):507-519. PubMed ID: 31270541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytomicrobiome for promoting sustainable agriculture and food security: Opportunities, challenges, and solutions.
    Chouhan GK; Verma JP; Jaiswal DK; Mukherjee A; Singh S; de Araujo Pereira AP; Liu H; Abd Allah EF; Singh BK
    Microbiol Res; 2021 Jul; 248():126763. PubMed ID: 33892241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Editing for Global Food Security.
    Ma X; Mau M; Sharbel TF
    Trends Biotechnol; 2018 Feb; 36(2):123-127. PubMed ID: 28893405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trichoderma for climate resilient agriculture.
    Kashyap PL; Rai P; Srivastava AK; Kumar S
    World J Microbiol Biotechnol; 2017 Aug; 33(8):155. PubMed ID: 28695465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.