BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31168321)

  • 1. Enhanced acetic acid stress tolerance and ethanol production in
    Zhang MM; Xiong L; Tang YJ; Mehmood MA; Zhao ZK; Bai FW; Zhao XQ
    Biotechnol Biofuels; 2019; 12():116. PubMed ID: 31168321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Kic1p and Cdc42p as Novel Targets to Engineer Yeast Acetic Acid Stress Tolerance.
    Chen HQ; Xing Q; Cheng C; Zhang MM; Liu CG; Champreda V; Zhao XQ
    Front Bioeng Biotechnol; 2022; 10():837813. PubMed ID: 35402407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Overexpression of a leucine transfer RNA gene tL(CAA)K improves the acetic acid tolerance of Saccharomyces cerevisiae].
    Zhao S; Yuan B; Wang X; Chen H; Zhao X; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4293-4302. PubMed ID: 34984875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae.
    Chen Y; Sheng J; Jiang T; Stevens J; Feng X; Wei N
    Biotechnol Biofuels; 2016; 9():9. PubMed ID: 26766964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.
    Cheng C; Zhang M; Xue C; Bai F; Zhao X
    J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid.
    Zhang M; Zhang K; Mehmood MA; Zhao ZK; Bai F; Zhao X
    Bioresour Technol; 2017 Dec; 245(Pt B):1461-1468. PubMed ID: 28606754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CRISPR Interference Screen of Essential Genes Reveals that Proteasome Regulation Dictates Acetic Acid Tolerance in Saccharomyces cerevisiae.
    Mukherjee V; Lind U; St Onge RP; Blomberg A; Nygård Y
    mSystems; 2021 Aug; 6(4):e0041821. PubMed ID: 34313457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies.
    Zhang MM; Chen HQ; Ye PL; Wattanachaisaereekul S; Bai FW; Zhao XQ
    Prog Mol Subcell Biol; 2019; 58():61-83. PubMed ID: 30911889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
    Mira NP; Palma M; Guerreiro JF; Sá-Correia I
    Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.
    Zhang MM; Zhao XQ; Cheng C; Bai FW
    Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis.
    Hirasawa T; Yoshikawa K; Nakakura Y; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    J Biotechnol; 2007 Aug; 131(1):34-44. PubMed ID: 17604866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of endogenous stress-tolerance related genes in Saccharomyces cerevisiae improved strain robustness and production of heterologous cellobiohydrolase.
    Lamour J; Wan C; Zhang M; Zhao X; Den Haan R
    FEMS Yeast Res; 2019 Jun; 19(4):. PubMed ID: 31073597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae].
    Zhao X; Zhang M; Xu G; Xu J; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2014 Mar; 30(3):368-80. PubMed ID: 25007573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New biomarkers underlying acetic acid tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii.
    Samakkarn W; Vandecruys P; Moreno MRF; Thevelein J; Ratanakhanokchai K; Soontorngun N
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):153. PubMed ID: 38240846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of arginase gene
    Xiong L; Wang YT; Zhou MH; Takagi H; Qin J; Zhao XQ
    Synth Syst Biotechnol; 2024 Dec; 9(4):723-732. PubMed ID: 38882181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of inhibitor tolerance in Saccharomyces cerevisiae by overexpression of the quinone oxidoreductase family gene YCR102C.
    Chen H; Li J; Wan C; Fang Q; Bai F; Zhao X
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31374572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents.
    Kim SK; Jin YS; Choi IG; Park YC; Seo JH
    Metab Eng; 2015 May; 29():46-55. PubMed ID: 25724339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae.
    Oh EJ; Wei N; Kwak S; Kim H; Jin YS
    J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation.
    Qin L; Dong S; Yu J; Ning X; Xu K; Zhang SJ; Xu L; Li BZ; Li J; Yuan YJ; Li C
    Metab Eng; 2020 Sep; 61():160-170. PubMed ID: 32553944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetic acid stress in budding yeast: From molecular mechanisms to applications.
    Guaragnella N; Bettiga M
    Yeast; 2021 Jul; 38(7):391-400. PubMed ID: 34000094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.