BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 31168323)

  • 1. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases.
    Sützl L; Foley G; Gillam EMJ; Bodén M; Haltrich D
    Biotechnol Biofuels; 2019; 12():118. PubMed ID: 31168323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplicity of enzymatic functions in the CAZy AA3 family.
    Sützl L; Laurent CVFP; Abrera AT; Schütz G; Ludwig R; Haltrich D
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2477-2492. PubMed ID: 29411063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Fungal FAD-Dependent AA3_2 Glucose Oxidoreductases from Hitherto Unexplored Phylogenetic Clades.
    Wijayanti SD; Sützl L; Duval A; Haltrich D
    J Fungi (Basel); 2021 Oct; 7(10):. PubMed ID: 34682294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity mapping of fungal CAZy AA3_2 oxidoreductases.
    Zhao H; Karppi J; Mototsune O; Poshina D; Svartström J; Nguyen TTM; Vo TM; Tsang A; Master E; Tenkanen M
    Biotechnol Biofuels Bioprod; 2024 Mar; 17(1):47. PubMed ID: 38539167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 Polyporales genomes.
    Ferreira P; Carro J; Serrano A; Martínez AT
    Mycologia; 2015; 107(6):1105-19. PubMed ID: 26297778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi.
    Zámocký M; Hallberg M; Ludwig R; Divne C; Haltrich D
    Gene; 2004 Aug; 338(1):1-14. PubMed ID: 15302401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.
    Wongnate T; Chaiyen P
    FEBS J; 2013 Jul; 280(13):3009-27. PubMed ID: 23578136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure and functional characterization of an oligosaccharide dehydrogenase from Pycnoporus cinnabarinus provides insights into fungal breakdown of lignocellulose.
    Cerutti G; Gugole E; Montemiglio LC; Turbé-Doan A; Chena D; Navarro D; Lomascolo A; Piumi F; Exertier C; Freda I; Vallone B; Record E; Savino C; Sciara G
    Biotechnol Biofuels; 2021 Jul; 14(1):161. PubMed ID: 34294139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion and evolution of insect GMC oxidoreductases.
    Iida K; Cox-Foster DL; Yang X; Ko WY; Cavener DR
    BMC Evol Biol; 2007 May; 7():75. PubMed ID: 17498303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution and separation of actinobacterial pyranose and
    Kostelac A; Taborda A; Martins LO; Haltrich D
    Appl Environ Microbiol; 2024 Jan; 90(1):e0167623. PubMed ID: 38179968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a novel AA3_1 xylooligosaccharide dehydrogenase from Thermothelomyces myriococcoides CBS 398.93.
    Zhao H; Karppi J; Nguyen TTM; Bellemare A; Tsang A; Master E; Tenkanen M
    Biotechnol Biofuels Bioprod; 2022 Dec; 15(1):135. PubMed ID: 36476312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical Characterization of Pyranose Oxidase from
    Kostelac A; Sützl L; Puc J; Furlanetto V; Divne C; Haltrich D
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose oxidase from Penicillium amagasakiense. Primary structure and comparison with other glucose-methanol-choline (GMC) oxidoreductases.
    Kiess M; Hecht HJ; Kalisz HM
    Eur J Biochem; 1998 Feb; 252(1):90-9. PubMed ID: 9523716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellobiose dehydrogenase.
    Csarman F; Wohlschlager L; Ludwig R
    Enzymes; 2020; 47():457-489. PubMed ID: 32951832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus Ustilago maydis.
    Couturier M; Mathieu Y; Li A; Navarro D; Drula E; Haon M; Grisel S; Ludwig R; Berrin JG
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):697-706. PubMed ID: 26452496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independently recruited oxidases from the glucose-methanol-choline oxidoreductase family enabled chemical defences in leaf beetle larvae (subtribe Chrysomelina) to evolve.
    Rahfeld P; Kirsch R; Kugel S; Wielsch N; Stock M; Groth M; Boland W; Burse A
    Proc Biol Sci; 2014 Aug; 281(1788):20140842. PubMed ID: 24943369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the Physiological Role of Aryl-Alcohol Flavooxidases as Quinone Reductases.
    Ferreira P; Carro J; Balcells B; Martínez AT; Serrano A
    Appl Environ Microbiol; 2023 May; 89(5):e0184422. PubMed ID: 37154753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expansion of the silkworm GMC oxidoreductase genes is associated with immunity.
    Sun W; Shen YH; Yang WJ; Cao YF; Xiang ZH; Zhang Z
    Insect Biochem Mol Biol; 2012 Dec; 42(12):935-45. PubMed ID: 23022604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal mode analysis and comparative study of intrinsic dynamics of alcohol oxidase enzymes from GMC protein family.
    Khan MW; Murali A
    J Biomol Struct Dyn; 2023 Sep; ():1-16. PubMed ID: 37676256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation.
    Hernández-Ortega A; Ferreira P; Martínez AT
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1395-410. PubMed ID: 22249717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.