BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31168707)

  • 1. Economic Method for Extraction/Purification of a Burkholderia cepacia Lipase with Potential Biotechnology Application.
    Padilha GS; Osório WR
    Appl Biochem Biotechnol; 2019 Dec; 189(4):1108-1126. PubMed ID: 31168707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of porcine pancreatic lipase by aqueous two-phase systems of polyethylene glycol and potassium phosphate.
    Zhou YJ; Hu CL; Wang N; Zhang WW; Yu XQ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 May; 926():77-82. PubMed ID: 23562905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of a Aspergillus niger lipase from a solid culture medium with aqueous two-phase systems.
    Marini A; Imelio N; Picó G; Romanini D; Farruggia B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jul; 879(22):2135-41. PubMed ID: 21689997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphonium alkyl PEG sulfate ionic liquids as coating materials for activation of Burkholderia cepacia lipase.
    Matsubara Y; Kadotani S; Nishihara T; Hikino Y; Fukaya Y; Nokami T; Itoh T
    Biotechnol J; 2015 Dec; 10(12):1944-51. PubMed ID: 26494565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro refolding of PEGylated lipase.
    Kim MY; Kwon JS; Kim HJ; Lee EK
    J Biotechnol; 2007 Aug; 131(2):177-9. PubMed ID: 17683821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corona charge selective micelle degradation catalyzed by P. cepacia lipase isoforms.
    Zhu X; Fryd M; Valentine AM; Wayland BB
    Chem Commun (Camb); 2014 Jan; 50(8):964-7. PubMed ID: 24301683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol.
    Xie C; Wu B; Qin S; He B
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):59-66. PubMed ID: 26497492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative method to improve the ethyl valerate yield using an immobilised
    Moreira WC; Elias ALP; Osório WR; Padilha GS
    J Microencapsul; 2019 Jun; 36(4):327-337. PubMed ID: 31151367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of porcine pancreatic lipase in a two-phase systems of polyethylene glycol/potassium phosphate aqueous.
    de Souza RL; Barbosa JM; Zanin GM; Lobão MW; Soares CM; Lima AS
    Appl Biochem Biotechnol; 2010 May; 161(1-8):288-300. PubMed ID: 20119857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extractive fermentation for improved production and recovery of lipase derived from Burkholderia cepacia using a thermoseparating polymer in aqueous two-phase systems.
    Show PL; Tan CP; Shamsul Anuar M; Ariff A; Yusof YA; Chen SK; Ling TC
    Bioresour Technol; 2012 Jul; 116():226-33. PubMed ID: 22061444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of detergent-based aqueous two-phase systems for the isolation of extracellular proteins: purification of a lipase from Pseudomonas cepacia.
    Terstappen GC; Geerts AJ; Kula MR
    Biotechnol Appl Biochem; 1992 Dec; 16(3):228-35. PubMed ID: 1282322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and in situ immobilization of lipase from of a mutant of Trichosporon laibacchii using aqueous two-phase systems.
    Zhang YY; Liu JH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Apr; 878(11-12):909-12. PubMed ID: 20189890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase of Pseudomonas cepacia for biotechnological purposes: purification, crystallization and characterization.
    Bornscheuer U; Reif OW; Lausch R; Freitag R; Scheper T; Kolisis FN; Menge U
    Biochim Biophys Acta; 1994 Sep; 1201(1):55-60. PubMed ID: 7522571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of the alkaline lipase from Burkholderia cepacia A.T.C.C. 25609.
    Dalal S; Singh PK; Raghava S; Rawat S; Gupta MN
    Biotechnol Appl Biochem; 2008 Sep; 51(Pt 1):23-31. PubMed ID: 18052929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent.
    Mello Bueno PR; de Oliveira TF; Castiglioni GL; Soares Júnior MS; Ulhoa CJ
    Water Sci Technol; 2015; 71(7):957-64. PubMed ID: 25860696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design for preparation of more active cross-linked enzyme aggregates of Burkholderia cepacia lipase using palm fiber residue.
    Alves NR; Pereira MM; Giordano RLC; Tardioli PW; Lima ÁS; Soares CMF; Souza RL
    Bioprocess Biosyst Eng; 2021 Jan; 44(1):57-66. PubMed ID: 32767112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of lipase produced by a new source of Bacillus in submerged fermentation using an aqueous two-phase system.
    Barbosa JM; Souza RL; Fricks AT; Zanin GM; Soares CM; Lima AS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Dec; 879(32):3853-8. PubMed ID: 22100550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.
    Sasso F; Natalello A; Castoldi S; Lotti M; Santambrogio C; Grandori R
    Biotechnol J; 2016 Jul; 11(7):954-60. PubMed ID: 27067648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of methoxypolyethylene glycol on the hydration, activity, conformation and dynamic properties of a lipase in a dry film.
    Secundo F; Barletta G; Mazzola G
    Biotechnol Bioeng; 2008 Oct; 101(2):255-62. PubMed ID: 18727030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of Pseudomonas cepacia lipase preparations for catalysis in organic solvents.
    Secundo F; Spadaro S; Carrea G; Overbeeke PL
    Biotechnol Bioeng; 1999 Mar; 62(5):554-61. PubMed ID: 10099564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.