These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3116936)

  • 21. Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H
    Aklujkar M; Leang C; Shrestha PM; Shrestha M; Lovley DR
    Sci Rep; 2017 Oct; 7(1):13135. PubMed ID: 29030620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum.
    Valgepea K; Loi KQ; Behrendorff JB; Lemgruber RSP; Plan M; Hodson MP; Köpke M; Nielsen LK; Marcellin E
    Metab Eng; 2017 May; 41():202-211. PubMed ID: 28442386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO
    Carlson ED; Papoutsakis ET
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon monoxide oxidation by methanogenic bacteria.
    Daniels L; Fuchs G; Thauer RK; Zeikus JG
    J Bacteriol; 1977 Oct; 132(1):118-26. PubMed ID: 21159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biotransformations of aromatic aldehydes by acetogenic bacteria.
    Lux MF; Keith E; Hsu TD; Drake HL
    FEMS Microbiol Lett; 1990 Jan; 55(1-2):73-7. PubMed ID: 2328911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of chemicals from C1 gases (CO, CO
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    World J Microbiol Biotechnol; 2017 Mar; 33(3):43. PubMed ID: 28160118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum.
    Clark JE; Ragsdale SW; Ljungdahl LG; Wiegel J
    J Bacteriol; 1982 Jul; 151(1):507-9. PubMed ID: 6806250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain.
    Whitham JM; Schulte MJ; Bobay BG; Bruno-Barcena JM; Chinn MS; Flickinger MC; Pawlak JJ; Grunden AM
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1615-1630. PubMed ID: 27866253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions.
    Xie BT; Liu ZY; Tian L; Li FL; Chen XH
    Bioresour Technol; 2015 Feb; 177():302-7. PubMed ID: 25496952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide.
    O'Brien JM; Wolkin RH; Moench TT; Morgan JB; Zeikus JG
    J Bacteriol; 1984 Apr; 158(1):373-5. PubMed ID: 6715282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically.
    Tan Y; Liu J; Chen X; Zheng H; Li F
    Mol Biosyst; 2013 Nov; 9(11):2775-84. PubMed ID: 24056499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum.
    Seifritz C; Daniel SL; Gössner A; Drake HL
    J Bacteriol; 1993 Dec; 175(24):8008-13. PubMed ID: 8253688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tracing carbon monoxide uptake by Clostridium ljungdahlii during ethanol fermentation using (13)C-enrichment technique.
    Yun SI; Gang SJ; Ro HM; Lee MJ; Choi WJ; Hong SG; Kang KK
    Bioprocess Biosyst Eng; 2013 May; 36(5):591-5. PubMed ID: 22940807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon monoxide oxidation by growing cultures of Clostridium pasteurianum.
    Fuchs G; Schnitker U; Thauer RK
    Eur J Biochem; 1974 Nov; 49(1):111-5. PubMed ID: 4459138
    [No Abstract]   [Full Text] [Related]  

  • 35. Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum.
    Eikmanns B; Fuchs G; Thauer RK
    Eur J Biochem; 1985 Jan; 146(1):149-54. PubMed ID: 3917916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor.
    Ukpong MN; Atiyeh HK; De Lorme MJ; Liu K; Zhu X; Tanner RS; Wilkins MR; Stevenson BS
    Biotechnol Bioeng; 2012 Nov; 109(11):2720-8. PubMed ID: 22566280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-carbon catabolism in acetogens: analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement.
    Kerby R; Niemczura W; Zeikus JG
    J Bacteriol; 1983 Sep; 155(3):1208-18. PubMed ID: 6411684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxalate- and Glyoxylate-Dependent Growth and Acetogenesis by Clostridium thermoaceticum.
    Daniel SL; Drake HL
    Appl Environ Microbiol; 1993 Sep; 59(9):3062-9. PubMed ID: 16349048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon monoxide bioconversion to butanol-ethanol by Clostridium carboxidivorans: kinetics and toxicity of alcohols.
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    Appl Microbiol Biotechnol; 2016 May; 100(9):4231-40. PubMed ID: 26921183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding of carbon disulfide to the site of acetyl-CoA synthesis by the nickel-iron-sulfur protein, carbon monoxide dehydrogenase, from Clostridium thermoaceticum.
    Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1994 Aug; 33(32):9769-77. PubMed ID: 8068656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.