BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31169502)

  • 1. Removal of metals from water using a novel high-rate algal pond and submerged macrophyte pond treatment reactor.
    Wang Y; Song X; Li H; Ding Y
    Water Sci Technol; 2019 Apr; 79(8):1447-1457. PubMed ID: 31169502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of revolving algae biofilm reactors for nutrients and metals removal from sludge thickening supernatant in a municipal wastewater treatment facility.
    Zhao X; Kumar K; Gross MA; Kunetz TE; Wen Z
    Water Res; 2018 Oct; 143():467-478. PubMed ID: 29986255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of seasons, N/P ratios and chemical compounds on phosphorus removal performance in algal pond combined with constructed wetlands.
    Zhimiao Z; Xinshan S; Yanping X; Yufeng Z; Zhijie G; Fanda L; Yi D; Wei W; Tianling Q
    Sci Total Environ; 2016 Dec; 573():906-914. PubMed ID: 27599054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient removal by the integrated use of high rate algal ponds and macrophyte systems in China.
    Chen P; Zhou Q; Paing J; Le H; Picot B
    Water Sci Technol; 2003; 48(2):251-7. PubMed ID: 14510218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algae as a green technology for heavy metals removal from various wastewater.
    Salama ES; Roh HS; Dev S; Khan MA; Abou-Shanab RAI; Chang SW; Jeon BH
    World J Microbiol Biotechnol; 2019 May; 35(5):75. PubMed ID: 31053951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.
    Khorsandi H; Alizadeh R; Tosinejad H; Porghaffar H
    Water Sci Technol; 2014; 70(1):95-101. PubMed ID: 25026585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgae and bacteria dynamics in high rate algal ponds based on modelling results: Long-term application of BIO_ALGAE model.
    Solimeno A; García J
    Sci Total Environ; 2019 Feb; 650(Pt 2):1818-1831. PubMed ID: 30286350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Purification Effect of Submerged Macrophyte System with Different Plants Combinations and C/N Ratios].
    Liu M; Chen KN
    Huan Jing Ke Xue; 2018 Jun; 39(6):2706-2714. PubMed ID: 29965626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal removal by combining anaerobic upflow packed bed reactors with water hyacinth ponds.
    Sekomo CB; Kagisha V; Rousseau D; Lens P
    Environ Technol; 2012 Jun; 33(10-12):1455-64. PubMed ID: 22856321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater.
    Sekaran G; Karthikeyan S; Nagalakshmi C; Mandal AB
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):281-91. PubMed ID: 22528997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient removal in wastewater treatment high rate algal ponds with carbon dioxide addition.
    Park JB; Craggs RJ
    Water Sci Technol; 2011; 63(8):1758-64. PubMed ID: 21866778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic treatment of landfill leachate using a submerged membrane bioreactor--prospects for on-site use.
    Sadri S; Cicek N; Van Gulck J
    Environ Technol; 2008 Aug; 29(8):899-907. PubMed ID: 18724645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor.
    Li HQ; Han HJ; Du MA; Wang W
    Bioresour Technol; 2011 Apr; 102(7):4667-73. PubMed ID: 21320775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants.
    Katsoyiannis A; Samara C
    Environ Sci Pollut Res Int; 2007 Jul; 14(5):284-92. PubMed ID: 17722762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.
    Derabe Maobe H; Onodera M; Takahashi M; Satoh H; Fukazawa T
    Water Sci Technol; 2014; 69(12):2519-25. PubMed ID: 24960016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fate of heavy metals (Zn, Cu, Pb, Cd and Cr) in an integrated wastewater treatment plant: two phase anaerobic reactor (RAP) - high rate algal pond (HRAP).
    Toumi A; Nejmeddine A; Belkoura M
    Environ Technol; 2003 Feb; 24(2):153-9. PubMed ID: 12666785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and removal of metals in urban wastewater treatment plants.
    Ustün GE
    J Hazard Mater; 2009 Dec; 172(2-3):833-8. PubMed ID: 19683867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the treatment performance of a high rate algal pond and a facultative waste stabilisation pond operating in rural South Australia.
    Buchanan N; Young P; Cromar NJ; Fallowfield HJ
    Water Sci Technol; 2018 Aug; 78(1-2):3-11. PubMed ID: 30101783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.