These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31170294)

  • 1. Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase.
    Jackson LN; Chim N; Shi C; Chaput JC
    Nucleic Acids Res; 2019 Jul; 47(13):6973-6983. PubMed ID: 31170294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.
    Dunn MR; Chaput JC
    Chembiochem; 2016 Oct; 17(19):1804-1808. PubMed ID: 27383648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Closing Mechanism of DNA Polymerase I at Atomic Resolution.
    Miller BR; Beese LS; Parish CA; Wu EY
    Structure; 2015 Sep; 23(9):1609-1620. PubMed ID: 26211612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for TNA synthesis by an engineered TNA polymerase.
    Chim N; Shi C; Sau SP; Nikoomanzar A; Chaput JC
    Nat Commun; 2017 Nov; 8(1):1810. PubMed ID: 29180809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for template switching by a group II intron-encoded non-LTR-retroelement reverse transcriptase.
    Lentzsch AM; Stamos JL; Yao J; Russell R; Lambowitz AM
    J Biol Chem; 2021 Aug; 297(2):100971. PubMed ID: 34280434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain.
    Najmudin S; Coté ML; Sun D; Yohannan S; Montano SP; Gu J; Georgiadis MM
    J Mol Biol; 2000 Feb; 296(2):613-32. PubMed ID: 10669612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal.
    Kiefer JR; Mao C; Braman JC; Beese LS
    Nature; 1998 Jan; 391(6664):304-7. PubMed ID: 9440698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of a high fidelity DNA polymerase bound to a mismatched nucleotide reveals an "ajar" intermediate conformation in the nucleotide selection mechanism.
    Wu EY; Beese LS
    J Biol Chem; 2011 Jun; 286(22):19758-67. PubMed ID: 21454515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP.
    Pelletier H; Sawaya MR; Kumar A; Wilson SH; Kraut J
    Science; 1994 Jun; 264(5167):1891-903. PubMed ID: 7516580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unified polymerase mechanism for nonhomologous DNA and RNA polymerases.
    Steitz TA; Smerdon SJ; Jäger J; Joyce CM
    Science; 1994 Dec; 266(5193):2022-5. PubMed ID: 7528445
    [No Abstract]   [Full Text] [Related]  

  • 11. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution.
    Sousa R; Chung YJ; Rose JP; Wang BC
    Nature; 1993 Aug; 364(6438):593-9. PubMed ID: 7688864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of DNA and RNA polymerases and their interactions with nucleic acid substrates.
    Arnold E; Ding J; Hughes SH; Hostomsky Z
    Curr Opin Struct Biol; 1995 Feb; 5(1):27-38. PubMed ID: 7539708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase.
    Patel PH; Jacobo-Molina A; Ding J; Tantillo C; Clark AD; Raag R; Nanni RG; Hughes SH; Arnold E
    Biochemistry; 1995 Apr; 34(16):5351-63. PubMed ID: 7537090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology.
    Medina E; Yik EJ; Herdewijn P; Chaput JC
    ACS Synth Biol; 2021 Jun; 10(6):1429-1437. PubMed ID: 34029459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerases. Two sisters and their cousin.
    Moras D
    Nature; 1993 Aug; 364(6438):572-3. PubMed ID: 7688863
    [No Abstract]   [Full Text] [Related]  

  • 17. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism.
    Sawaya MR; Pelletier H; Kumar A; Wilson SH; Kraut J
    Science; 1994 Jun; 264(5167):1930-5. PubMed ID: 7516581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 A resolution.
    Kiefer JR; Mao C; Hansen CJ; Basehore SL; Hogrefe HH; Braman JC; Beese LS
    Structure; 1997 Jan; 5(1):95-108. PubMed ID: 9016716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.
    Solomon HV; Tabachnikov O; Lansky S; Salama R; Feinberg H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2433-48. PubMed ID: 26627651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics study of the opening mechanism for DNA polymerase I.
    Miller BR; Parish CA; Wu EY
    PLoS Comput Biol; 2014 Dec; 10(12):e1003961. PubMed ID: 25474643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.