BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31170463)

  • 1. The effect of alterations in salinity and temperature on neuroendocrine responses of the Antarctic fish Harpagifer antarcticus.
    Vargas-Chacoff L; Muñoz JLP; Ocampo D; Paschke K; Navarro JM
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():131-137. PubMed ID: 31170463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of tissue protein synthesis rates in an Antarctic, Harpagifer antarcticus and a temperate, Lipophrys pholis teleost.
    Fraser KPP; Peck LS; Clark MS; Clarke A
    Comp Biochem Physiol A Mol Integr Physiol; 2024 Sep; 295():111650. PubMed ID: 38718893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities.
    Vargas-Chacoff L; Saavedra E; Oyarzún R; Martínez-Montaño E; Pontigo JP; Yáñez A; Ruiz-Jarabo I; Mancera JM; Ortiz E; Bertrán C
    Fish Physiol Biochem; 2015 Dec; 41(6):1369-81. PubMed ID: 26148800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of the warm acclimated protein gene (wap65) in the Antarctic plunderfish (Harpagifer antarcticus).
    Clark MS; Burns G
    DNA Seq; 2008 Feb; 19(1):50-5. PubMed ID: 17852333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myogenic cell cycle duration in Harpagifer species with sub-Antarctic and Antarctic distributions: evidence for cold compensation.
    Brodeur JC; Calvo J; Clarke A; Johnston IA
    J Exp Biol; 2003 Mar; 206(Pt 6):1011-6. PubMed ID: 12582143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change.
    Chui APY; Ang P
    PLoS One; 2017; 12(6):e0179423. PubMed ID: 28622371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus.
    Thorne MA; Burns G; Fraser KP; Hillyard G; Clark MS
    Mar Genomics; 2010 Mar; 3(1):35-44. PubMed ID: 21798195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating dispersal potential of an invasive fish by the use of aerobic scope and osmoregulation capacity.
    Behrens JW; van Deurs M; Christensen EAF
    PLoS One; 2017; 12(4):e0176038. PubMed ID: 28423029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO
    Davis BE; Flynn EE; Miller NA; Nelson FA; Fangue NA; Todgham AE
    Glob Chang Biol; 2018 Feb; 24(2):e655-e670. PubMed ID: 29155460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki.
    Franklin CE; Davison W; Seebacher F
    J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salinity and temperature tolerance of brown-marbled grouper Epinephelus fuscoguttatus.
    Cheng SY; Chen CS; Chen JC
    Fish Physiol Biochem; 2013 Apr; 39(2):277-86. PubMed ID: 22869056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiles of antioxidant gene expression and physiological changes by thermal and hypoosmotic stresses in black porgy (Acanthopagrus schlegeli).
    An KW; Kim NN; Shin HS; Kil GS; Choi CY
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Jun; 156(2):262-8. PubMed ID: 20172041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of elevated temperature on osmoregulation and stress responses in Atlantic salmon Salmo salar smolts in fresh water and seawater.
    Vargas-Chacoff L; Regish AM; Weinstock A; McCormick SD
    J Fish Biol; 2018 Sep; 93(3):550-559. PubMed ID: 29956316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma Stress Responses in Juvenile Red-Spotted Grouper (
    Lee JW; Kim HB; Baek HJ
    Dev Reprod; 2016 Sep; 20(3):187-196. PubMed ID: 27796000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of salinity on the upper lethal temperature tolerance of early-juvenile red drum.
    McDonald D; Bumguardner B; Cason P
    J Therm Biol; 2015 Oct; 53():33-7. PubMed ID: 26590453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes.
    Place SP; Zippay ML; Hofmann GE
    Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R429-36. PubMed ID: 15117724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of temperature on peripheral neuronal function in eurythermal and stenothermal crustaceans.
    Young JS; Peck LS; Matheson T
    J Exp Biol; 2006 May; 209(Pt 10):1976-87. PubMed ID: 16651562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waterborne cadmium and zinc uptake in a euryhaline teleost Acanthopagrus schlegeli acclimated to different salinities.
    Zhang L; Wang WX
    Aquat Toxicol; 2007 Aug; 84(2):173-81. PubMed ID: 17675173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of warm acclimation, low salinity, and trophic fluoride on plasmatic constituents of the Antarctic fish Notothenia rossii Richardson, 1844.
    Rodrigues E; Feijó-Oliveira M; Vani GS; Suda CN; Carvalho CS; Donatti L; Lavrado HP; Rodrigues E
    Fish Physiol Biochem; 2013 Dec; 39(6):1591-601. PubMed ID: 23748964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    Mar Genomics; 2014 Dec; 18 Pt B():163-71. PubMed ID: 24999838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.