These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 31170511)
1. Development of medical-grade, discrete, multi-walled carbon nanotubes as drug delivery molecules to enhance the treatment of hematological malignancies. Falank C; Tasset AW; Farrell M; Harris S; Everill P; Marinkovic M; Reagan MR Nanomedicine; 2019 Aug; 20():102025. PubMed ID: 31170511 [TBL] [Abstract][Full Text] [Related]
2. PEGylated multi-walled carbon nanotubes as versatile vector for tumor-specific intracellular triggered release with enhanced anti-cancer efficiency: Optimization of length and PEGylation degree. Zhao X; Tian K; Zhou T; Jia X; Li J; Liu P Colloids Surf B Biointerfaces; 2018 Aug; 168():43-49. PubMed ID: 29482875 [TBL] [Abstract][Full Text] [Related]
3. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of Doxorubicin to cancer cells. Niu L; Meng L; Lu Q Macromol Biosci; 2013 Jun; 13(6):735-44. PubMed ID: 23616476 [TBL] [Abstract][Full Text] [Related]
4. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Ren J; Shen S; Wang D; Xi Z; Guo L; Pang Z; Qian Y; Sun X; Jiang X Biomaterials; 2012 Apr; 33(11):3324-33. PubMed ID: 22281423 [TBL] [Abstract][Full Text] [Related]
5. Lysinated Multiwalled Carbon Nanotubes with Carbohydrate Ligands as an Effective Nanocarrier for Targeted Doxorubicin Delivery to Breast Cancer Cells. Thakur CK; Neupane R; Karthikeyan C; Ashby CR; Babu RJ; Boddu SHS; Tiwari AK; Moorthy NSHN Molecules; 2022 Nov; 27(21):. PubMed ID: 36364286 [TBL] [Abstract][Full Text] [Related]
6. Cytotoxicity of doxrubicin loaded single-walled carbon nanotubes. Ünlü A; Meran M; Dinc B; Karatepe N; Bektaş M; Güner FS Mol Biol Rep; 2018 Aug; 45(4):523-531. PubMed ID: 29797174 [TBL] [Abstract][Full Text] [Related]
7. Effect of functionalization on drug delivery potential of carbon nanotubes. Sharma S; Mehra NK; Jain K; Jain NK Artif Cells Nanomed Biotechnol; 2016 Dec; 44(8):1851-1860. PubMed ID: 26732473 [TBL] [Abstract][Full Text] [Related]
8. Doxorubicin loaded folate-targeted carbon nanotubes: preparation, cellular internalization, in vitro cytotoxicity and disposition kinetic study in the isolated perfused rat liver. Dinan NM; Atyabi F; Rouini MR; Amini M; Golabchifar AA; Dinarvand R Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():47-55. PubMed ID: 24863196 [TBL] [Abstract][Full Text] [Related]
9. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics. Lay CL; Liu HQ; Tan HR; Liu Y Nanotechnology; 2010 Feb; 21(6):065101. PubMed ID: 20057024 [TBL] [Abstract][Full Text] [Related]
10. The cancer targeting potential of D-α-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes. Mehra NK; Verma AK; Mishra PR; Jain NK Biomaterials; 2014 May; 35(15):4573-88. PubMed ID: 24612818 [TBL] [Abstract][Full Text] [Related]
11. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. Mehra NK; Jain NK J Drug Target; 2013 Sep; 21(8):745-58. PubMed ID: 23822734 [TBL] [Abstract][Full Text] [Related]
12. Polyionic complex of single-walled carbon nanotubes and PEG-grafted-hyperbranched polyethyleneimine (PEG-PEI-SWNT) for an improved doxorubicin loading and delivery: development and in vitro characterization. Farvadi F; Tamaddon A; Sobhani Z; Abolmaali SS Artif Cells Nanomed Biotechnol; 2017 Aug; 45(5):855-863. PubMed ID: 27176858 [TBL] [Abstract][Full Text] [Related]
13. IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy. Fu X; Wang X; Zhou S; Zhang Y Int J Nanomedicine; 2017; 12():3751-3766. PubMed ID: 28553112 [TBL] [Abstract][Full Text] [Related]
14. PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. Xiao K; Luo J; Li Y; Lee JS; Fung G; Lam KS J Control Release; 2011 Oct; 155(2):272-81. PubMed ID: 21787818 [TBL] [Abstract][Full Text] [Related]
15. Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance. Bhirde AA; Chikkaveeraiah BV; Srivatsan A; Niu G; Jin AJ; Kapoor A; Wang Z; Patel S; Patel V; Gorbach AM; Leapman RD; Gutkind JS; Hight Walker AR; Chen X ACS Nano; 2014 May; 8(5):4177-89. PubMed ID: 24708375 [TBL] [Abstract][Full Text] [Related]
16. Tunable doxorubicin release from polymer-gated multiwalled carbon nanotubes. Pistone A; Iannazzo D; Ansari S; Milone C; Salamò M; Galvagno S; Cirmi S; Navarra M Int J Pharm; 2016 Dec; 515(1-2):30-36. PubMed ID: 27720871 [TBL] [Abstract][Full Text] [Related]
17. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Prajapati SK; Jain A; Shrivastava C; Jain AK Int J Biol Macromol; 2019 Feb; 123():691-703. PubMed ID: 30445095 [TBL] [Abstract][Full Text] [Related]
18. Multi-layered tumor-targeting photothermal-doxorubicin releasing nanotubes eradicate tumors in vivo with negligible systemic toxicity. Wang D; Meng L; Fei Z; Hou C; Long J; Zeng L; Dyson PJ; Huang P Nanoscale; 2018 May; 10(18):8536-8546. PubMed ID: 29694478 [TBL] [Abstract][Full Text] [Related]
19. Carbon nanotubes for delivery of small molecule drugs. Wong BS; Yoong SL; Jagusiak A; Panczyk T; Ho HK; Ang WH; Pastorin G Adv Drug Deliv Rev; 2013 Dec; 65(15):1964-2015. PubMed ID: 23954402 [TBL] [Abstract][Full Text] [Related]
20. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]