These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31170544)

  • 1. Enhanced ultrasonic detection of near-surface flaws using transverse-wave backscatter.
    Huang Y; Turner JA; Song Y; Ni P; Li X
    Ultrasonics; 2019 Sep; 98():20-27. PubMed ID: 31170544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting small flaws in two-phase Ti-6Al-4V with rough surfaces.
    Li X; Fu Y; Zhang F; Rao Y
    Ultrasonics; 2020 Aug; 106():106128. PubMed ID: 32283418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Ultrasonic Flaw Detection using an Ultra-high Gain and Time-dependent Threshold.
    Song Y; Turner JA; Peng Z; Chao C; Li X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Apr; ():. PubMed ID: 29993632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Ultrasonic Flaw Detection Using an Ultrahigh Gain and Time-Dependent Threshold.
    Song Y; Turner JA; Peng Z; Chen C; Li X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1214-1225. PubMed ID: 29993374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transverse-to-transverse diffuse ultrasonic scattering.
    Hu P; Turner JA
    J Acoust Soc Am; 2017 Aug; 142(2):1112. PubMed ID: 28863556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transverse-to-transverse diffuse ultrasonic double scattering.
    Huang Y; Turner JA; Song Y; Li X
    Ultrasonics; 2021 Mar; 111():106301. PubMed ID: 33316642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Application of Partial Immersion Focused Ultrasonic Transducers for Austenitic Weld Inspection.
    Zhang Y; Qin Z; Luo S; Hyunjo J; Zhang S
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode-converted diffuse ultrasonic backscatter.
    Hu P; Kube CM; Koester LW; Turner JA
    J Acoust Soc Am; 2013 Aug; 134(2):982-90. PubMed ID: 23927097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistics associated with the scattering of ultrasound from microstructure.
    Song Y; Kube CM; Turner JA; Li X
    Ultrasonics; 2017 Sep; 80():58-61. PubMed ID: 28499125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subwavelength ultrasonic imaging using a deep convolutional neural network trained on structural noise.
    Cai Y; Song Y; Ni P; Liu X; Li X
    Ultrasonics; 2021 Dec; 117():106552. PubMed ID: 34411873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wigner distribution of a transducer beam pattern within a multiple scattering formalism for heterogeneous solids.
    Ghoshal G; Turner JA; Weaver RL
    J Acoust Soc Am; 2007 Oct; 122(4):2009-21. PubMed ID: 17902838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffuse ultrasonic backscatter at normal incidence through a curved interface.
    Ghoshal G; Turner JA
    J Acoust Soc Am; 2010 Dec; 128(6):3449-58. PubMed ID: 21218878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flaw detection with ultrasonic backscatter signal envelopes.
    Song Y; Kube CM; Peng Z; Turner JA; Li X
    J Acoust Soc Am; 2019 Feb; 145(2):EL142. PubMed ID: 30823796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode-converted ultrasonic scattering in polycrystals with elongated grains.
    Arguelles AP; Kube CM; Hu P; Turner JA
    J Acoust Soc Am; 2016 Sep; 140(3):1570. PubMed ID: 27914376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic backscatter from elongated grains using line focused ultrasound.
    Kube CM; Arguelles AP; Turner JA
    Ultrasonics; 2018 Jan; 82():79-83. PubMed ID: 28759759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of double scattering in diffuse ultrasonic backscatter measurements.
    Hu P; Turner JA
    J Acoust Soc Am; 2015 Jan; 137(1):321-34. PubMed ID: 25618063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling ultrasonic wave fields scattered by flaws using a quasi-Monte Carlo method: Theoretical method and experimental verification.
    Xie L; Zhang S; Wang L; Cheng C; Li X
    Ultrasonics; 2023 Jul; 132():107002. PubMed ID: 37037127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flaw Detection in Highly Scattering Materials Using a Simple Ultrasonic Sensor Employing Adaptive Template Matching.
    Wu B; Huang Y
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete.
    Ham S; Song H; Oelze ML; Popovics JS
    Ultrasonics; 2017 Mar; 75():46-57. PubMed ID: 27914306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting small flaws near the interface in pulse-echo.
    Fritsch C; Veca A
    Ultrasonics; 2004 Apr; 42(1-9):797-801. PubMed ID: 15047386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.