BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 31170575)

  • 1. Cost-effective stochastic MAC circuits for deep neural networks.
    Sim H; Lee J
    Neural Netw; 2019 Sep; 117():152-162. PubMed ID: 31170575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bitstream-Based Neural Network for Scalable, Efficient, and Accurate Deep Learning Hardware.
    Sim H; Lee J
    Front Neurosci; 2020; 14():543472. PubMed ID: 33424530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Survey of Stochastic Computing Neural Networks for Machine Learning Applications.
    Liu Y; Liu S; Wang Y; Lombardi F; Han J
    IEEE Trans Neural Netw Learn Syst; 2021 Jul; 32(7):2809-2824. PubMed ID: 32755867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully Parallel Stochastic Computing Hardware Implementation of Convolutional Neural Networks for Edge Computing Applications.
    Frasser CF; Linares-Serrano P; de Rios IDL; Moran A; Skibinsky-Gitlin ES; Font-Rossello J; Canals V; Roca M; Serrano-Gotarredona T; Rossello JL
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10408-10418. PubMed ID: 35452392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hardware-Efficient Stochastic Binary CNN Architectures for Near-Sensor Computing.
    Parmar V; Penkovsky B; Querlioz D; Suri M
    Front Neurosci; 2021; 15():781786. PubMed ID: 35069101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic Computing Convolutional Neural Network Architecture Reinvented for Highly Efficient Artificial Intelligence Workload on Field-Programmable Gate Array.
    Lee YY; Halim ZA; Wahab MNA; Almohamad TA
    Research (Wash D C); 2024; 7():0307. PubMed ID: 38439995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Fully Spectral CNNs for Efficient FPGA-Based Acceleration.
    Liu S; Fan H; Luk W
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8111-8123. PubMed ID: 36459611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Convolutional Neural Networks for large-scale speech tasks.
    Sainath TN; Kingsbury B; Saon G; Soltau H; Mohamed AR; Dahl G; Ramabhadran B
    Neural Netw; 2015 Apr; 64():39-48. PubMed ID: 25439765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards dropout training for convolutional neural networks.
    Wu H; Gu X
    Neural Netw; 2015 Nov; 71():1-10. PubMed ID: 26277608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices.
    Gokmen T; Onen M; Haensch W
    Front Neurosci; 2017; 11():538. PubMed ID: 29066942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Convolutional Neural Network Acceleration and Compression Based on
    Wei M; Zhao Y; Chen X; Li C; Lu J
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-Inspired Hardware Solutions for Inference in Bayesian Networks.
    Bagheriye L; Kwisthout J
    Front Neurosci; 2021; 15():728086. PubMed ID: 34924925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Full-Stack Acceleration of Deep Convolutional Neural Networks on FPGAs.
    Liu S; Fan H; Ferianc M; Niu X; Shi H; Luk W
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3974-3987. PubMed ID: 33577458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Energy-Efficient Bayesian Neural Network Implementation Using Stochastic Computing Method.
    Jia X; Gu H; Liu Y; Yang J; Wang X; Pan W; Zhang Y; Cotofana S; Zhao W
    IEEE Trans Neural Netw Learn Syst; 2023 May; PP():. PubMed ID: 37134041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic computing in convolutional neural network implementation: a review.
    Lee YY; Abdul Halim Z
    PeerJ Comput Sci; 2020; 6():e309. PubMed ID: 33816960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An FPGA Implementation of Deep Spiking Neural Networks for Low-Power and Fast Classification.
    Ju X; Fang B; Yan R; Xu X; Tang H
    Neural Comput; 2020 Jan; 32(1):182-204. PubMed ID: 31703174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Flexible Hardware Accelerators for Image Convolutions and Transposed Convolutions.
    Sestito C; Spagnolo F; Perri S
    J Imaging; 2021 Oct; 7(10):. PubMed ID: 34677296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating Inference of Convolutional Neural Networks Using In-memory Computing.
    Dazzi M; Sebastian A; Benini L; Eleftheriou E
    Front Comput Neurosci; 2021; 15():674154. PubMed ID: 34413731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FPNA: interaction between FPGA and neural computation.
    Girau B
    Int J Neural Syst; 2000 Jun; 10(3):243-59. PubMed ID: 11011795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Plug-Ins for Reducing Inference-Latency of Spiking Convolutional Neural Networks During Inference Phase.
    Chen X; Yuan X; Fu G; Luo Y; Yue T; Yan F; Wang Y; Pan H
    Front Comput Neurosci; 2021; 15():697469. PubMed ID: 34733147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.