BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31170633)

  • 1. Phosphate microbial mineralization removes nickel ions from electroplating wastewater.
    Yu X; Jiang J
    J Environ Manage; 2019 Sep; 245():447-453. PubMed ID: 31170633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfate and phosphate ions removal using novel nano-adsorbents: modeling and optimization, kinetics, isotherm and thermodynamic studies.
    Shahzadi T; Anwaar A; Riaz T; Zaib M
    Int J Phytoremediation; 2022; 24(14):1518-1532. PubMed ID: 35188838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel superparamagnetic micro-nano-bio-adsorbent PDA/Fe
    Li L; Zhong D; Xu Y; Zhong N
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23981-23993. PubMed ID: 31222649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techno-economic estimation of electroplating wastewater treatment using zero-valent iron nanoparticles: batch optimization, continuous feed, and scaling up studies.
    Hamdy A; Mostafa MK; Nasr M
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):25372-25385. PubMed ID: 31264158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metals remediation through bio-solidification: Potential application in environmental geotechnics.
    Yu X; Jiang N; Yang Y; Liu H; Gao X; Cheng L
    Ecotoxicol Environ Saf; 2023 Sep; 263():115305. PubMed ID: 37517309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate microbial mineralization consolidation of waste incineration fly ash and removal of lead ions.
    Yu X; Jiang J
    Ecotoxicol Environ Saf; 2020 Mar; 191():110224. PubMed ID: 31991396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the effectiveness of orange (Citrus reticulata) peel in the recovery of nickel from electroplating wastewater.
    Hussein RA
    J Egypt Public Health Assoc; 2014 Dec; 89(3):154-8. PubMed ID: 25534181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovering heavy metals from electroplating wastewater and their conversion into Zn
    Fu D; Kurniawan TA; Avtar R; Xu P; Othman MHD
    Chemosphere; 2021 May; 271():129861. PubMed ID: 33736203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of low concentrations of nickel ions in electroplating wastewater using capacitive deionization technology.
    Wang C; Li T; Yu G; Deng S
    Chemosphere; 2021 Dec; 284():131341. PubMed ID: 34323794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amine-functionalized mesoporous polymer as potential sorbent for nickel preconcentration from electroplating wastewater.
    Islam A; Zaidi N; Ahmad H; Kumar S
    Environ Sci Pollut Res Int; 2015 May; 22(10):7716-25. PubMed ID: 25561258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.
    Nagarajan N; Gunasekaran P; Rajendran P
    Can J Microbiol; 2015 Apr; 61(4):297-306. PubMed ID: 25768053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of low concentrations of nickel ions in electroplating wastewater by combination of electrodialysis and electrodeposition.
    Wang C; Li T; Yu G; Deng S
    Chemosphere; 2021 Jan; 263():128208. PubMed ID: 33297167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process parameters and biological mechanism of efficient removal of Cd(II) ion from wastewater by a novel Bacillus subtilis TR1.
    Wang Z; Tan R; Gong J; Gong B; Guan Q; Mi X; Deng D; Liu X; Liu C; Deng C; Ding C; Zeng G
    Chemosphere; 2023 Mar; 318():137958. PubMed ID: 36708781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Cu(II) and Ni(II) ions from wastewater onto bentonite and bentonite/GO composite.
    Chang YS; Au PI; Mubarak NM; Khalid M; Jagadish P; Walvekar R; Abdullah EC
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):33270-33296. PubMed ID: 32529626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.
    Sousa FW; Sousa MJ; Oliveira IR; Oliveira AG; Cavalcante RM; Fechine PB; Neto VO; de Keukeleire D; Nascimento RF
    J Environ Manage; 2009 Aug; 90(11):3340-4. PubMed ID: 19535200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization and reaction kinetics on the removal of Nickel and COD from wastewater from electroplating industry using Electrocoagulation and Advanced Oxidation Processes.
    Moersidik SS; Nugroho R; Handayani M; Kamilawati ; Pratama MA
    Heliyon; 2020 Feb; 6(2):e03319. PubMed ID: 32099914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Ag3PO4/Ni3(PO4)2 hetero-composites by cation exchange reaction and its enhancing photocatalytic performance.
    Wang Y; Wang K; Wang X
    J Colloid Interface Sci; 2016 Mar; 466():178-85. PubMed ID: 26722799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological upcycling of nickel and sulfate as electrocatalyst from electroplating wastewater.
    Fu XZ; Yang YR; Liu T; Guo ZY; Li CX; Li HY; Cui KP; Li WW
    Water Res; 2024 Feb; 250():121063. PubMed ID: 38171176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of impurities from nickel-plating baths using commercial sorbents to reduce wastewater discharges.
    Pérez Jiménez VA; Hernández-Montoya V; Ramírez-Montoya LA; Castillo-Borja F; Tovar-Gómez R; Montes-Morán MA
    J Environ Manage; 2021 Apr; 284():112024. PubMed ID: 33548751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a new low cost natural phosphate doped by nickel oxide nanoparticles for capacitive adsorption of reactive red 141 azo dye.
    Hafdi H; Joudi M; Mouldar J; Hatimi B; Nasrellah H; El Mhammedi MA; Bakasse M
    Environ Res; 2020 May; 184():109322. PubMed ID: 32146215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.