These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells. Heinemann C; Heinemann S; Lode A; Bernhardt A; Worch H; Hanke T Biomacromolecules; 2009 May; 10(5):1305-10. PubMed ID: 19344120 [TBL] [Abstract][Full Text] [Related]
3. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds. Heinemann S; Heinemann C; Jäger M; Neunzehn J; Wiesmann HP; Hanke T ACS Appl Mater Interfaces; 2011 Nov; 3(11):4323-31. PubMed ID: 21942510 [TBL] [Abstract][Full Text] [Related]
4. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
5. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. Kazimierczak P; Benko A; Nocun M; Przekora A Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360 [TBL] [Abstract][Full Text] [Related]
6. In vitro osteogenic potential of human bone marrow stromal cells cultivated in porous scaffolds from mineralized collagen. Bernhardt A; Lode A; Mietrach C; Hempel U; Hanke T; Gelinsky M J Biomed Mater Res A; 2009 Sep; 90(3):852-62. PubMed ID: 18615470 [TBL] [Abstract][Full Text] [Related]
7. Hyaluronic acid oligosaccharides modified mineralized collagen and chitosan with enhanced osteoinductive properties for bone tissue engineering. Li M; Jia W; Zhang X; Weng H; Gu G; Chen Z Carbohydr Polym; 2021 May; 260():117780. PubMed ID: 33712136 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670 [TBL] [Abstract][Full Text] [Related]
9. Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite. Kazimierczak P; Kolmas J; Przekora A Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390753 [TBL] [Abstract][Full Text] [Related]
10. Hydroxyapatite/collagen coating on PLGA electrospun fibers for osteogenic differentiation of bone marrow mesenchymal stem cells. Yang X; Li Y; He W; Huang Q; Zhang R; Feng Q J Biomed Mater Res A; 2018 Nov; 106(11):2863-2870. PubMed ID: 30289593 [TBL] [Abstract][Full Text] [Related]
11. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic differentiation ability of human mesenchymal stem cells on Chitosan/Poly (Caprolactone)/nano beta Tricalcium Phosphate composite scaffolds. Siddiqui N; Madala S; Rao Parcha S; Mallick SP Biomed Phys Eng Express; 2020 Jan; 6(1):015018. PubMed ID: 33438606 [TBL] [Abstract][Full Text] [Related]
13. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
14. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. Wang Y; Van Manh N; Wang H; Zhong X; Zhang X; Li C Int J Nanomedicine; 2016; 11():2053-67. PubMed ID: 27274235 [TBL] [Abstract][Full Text] [Related]
15. Proliferation and osteogenic differentiation of mesenchymal stromal cells in a novel porous hydroxyapatite scaffold. Krishnamurithy G; Murali MR; Hamdi M; Abbas AA; Raghavendran HB; Kamarul T Regen Med; 2015; 10(5):579-90. PubMed ID: 26237702 [TBL] [Abstract][Full Text] [Related]
17. Collagen-calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering. Thein-Han W; Xu HH Tissue Eng Part A; 2011 Dec; 17(23-24):2943-54. PubMed ID: 21851269 [TBL] [Abstract][Full Text] [Related]
18. Effect of surface-modified collagen on the adhesion, biocompatibility and differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds. Kuo YC; Yeh CF Colloids Surf B Biointerfaces; 2011 Feb; 82(2):624-31. PubMed ID: 21074381 [TBL] [Abstract][Full Text] [Related]
19. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X; Yin X; Yang D; Tan J; Liu G Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840 [TBL] [Abstract][Full Text] [Related]
20. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Chesnutt BM; Yuan Y; Buddington K; Haggard WO; Bumgardner JD Tissue Eng Part A; 2009 Sep; 15(9):2571-9. PubMed ID: 19309240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]