BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31171163)

  • 21. Amplified detection of genome-containing biological targets using terminal deoxynucleotidyl transferase-assisted rolling circle amplification.
    Du YC; Zhu YJ; Li XY; Kong DM
    Chem Commun (Camb); 2018 Jan; 54(6):682-685. PubMed ID: 29303169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons.
    Peng Y; Li D; Yuan R; Xiang Y
    Biosens Bioelectron; 2018 May; 105():1-5. PubMed ID: 29331900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single Primer Based Multisite Strand Displacement Reaction Amplification Strategy for Rapid Detection of Terminal Deoxynucleotidyl Transferase Activity.
    Liu X; Wang H; Deng K; Kwee S; Huang H; Tang L
    Anal Chem; 2019 Jun; 91(11):7482-7486. PubMed ID: 31082205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-locked aptamer probe mediated cascade amplification strategy for highly sensitive and selective detection of protein and small molecule.
    Li W; Jiang W; Wang L
    Anal Chim Acta; 2016 Oct; 940():1-7. PubMed ID: 27662754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Label-free and sensitive detection assay for terminal deoxynucleotidyl transferase via polyadenosine-coralyne fluorescence enhancement strategy.
    Wang Y; Sun X; Zeng J; Deng M; Li N; Chen Q; Zhu H; Liu F; Xing X
    Anal Biochem; 2019 Feb; 567():85-89. PubMed ID: 30157446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of aptamer fluorescent switch assay for aflatoxin B1 by using fluorescein-labeled aptamer and black hole quencher 1-labeled complementary DNA.
    Li Y; Sun L; Zhao Q
    Anal Bioanal Chem; 2018 Sep; 410(24):6269-6277. PubMed ID: 29998366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel sensing platform using aptamer and RNA polymerase-based amplification for detection of cancer cells.
    Zhao J; Zhang L; Chen C; Jiang J; Yu R
    Anal Chim Acta; 2012 Oct; 745():106-11. PubMed ID: 22938613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasensitive electrochemical DNA sensor based on the target induced structural switching and surface-initiated enzymatic polymerization.
    Wan Y; Wang P; Su Y; Zhu X; Yang S; Lu J; Gao J; Fan C; Huang Q
    Biosens Bioelectron; 2014 May; 55():231-6. PubMed ID: 24384265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells.
    Zhao B; Wu P; Zhang H; Cai C
    Biosens Bioelectron; 2015 Jun; 68():763-770. PubMed ID: 25682505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fluorescent aptasensor based on CRISPR-Cas12a combined with TdT for highly sensitive detection of cocaine.
    Feng T; Liu J; Chen G; Wu L; Ren F; Yang Y; Zhu J; Shen F; Wang L; Chen Q
    Anal Bioanal Chem; 2022 Oct; 414(24):7291-7297. PubMed ID: 36029324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly efficient incorporation of dATP in terminal transferase polymerization forming the ploy (A)
    Zhu J; Chen L
    Anal Chim Acta; 2022 Aug; 1221():340080. PubMed ID: 35934340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of an Aptamer-Based Sensing Platform for Metal Ions, Proteins, and Small Molecules through Terminal Deoxynucleotidyl Transferase Induced G-Quadruplex Formation.
    Leung KH; He B; Yang C; Leung CH; Wang HM; Ma DL
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24046-52. PubMed ID: 26449329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Template-free multiple signal amplification for highly sensitive detection of cancer cell-derived exosomes.
    Wang L; Deng Y; Huang Y; Wei J; Ma J; Li G
    Chem Commun (Camb); 2021 Sep; 57(68):8508-8511. PubMed ID: 34351331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.
    Cui L; Zou Y; Lin N; Zhu Z; Jenkins G; Yang CJ
    Anal Chem; 2012 Jul; 84(13):5535-41. PubMed ID: 22686244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Target-triggered catalytic hairpin assembly and TdT-catalyzed DNA polymerization for amplified electronic detection of thrombin in human serums.
    Shi K; Dou B; Yang J; Yuan R; Xiang Y
    Biosens Bioelectron; 2017 Jan; 87():495-500. PubMed ID: 27592241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An aptamer-based fluorescent biosensor for potassium ion detection using a pyrene-labeled molecular beacon.
    Shi C; Gu H; Ma C
    Anal Biochem; 2010 May; 400(1):99-102. PubMed ID: 20056100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selection and characterization of dimethylindole red DNA aptamers for the development of light-up fluorescent probes.
    Wang H; Wang J; Wang Q; Chen X; Liu M; Chen H; Pei R
    Talanta; 2017 Jun; 168():217-221. PubMed ID: 28391845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aptamer switch probe based on intramolecular displacement.
    Tang Z; Mallikaratchy P; Yang R; Kim Y; Zhu Z; Wang H; Tan W
    J Am Chem Soc; 2008 Aug; 130(34):11268-9. PubMed ID: 18680291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Target-induced conjunction of split aptamer fragments and assembly with a water-soluble conjugated polymer for improved protein detection.
    Liu X; Shi L; Hua X; Huang Y; Su S; Fan Q; Wang L; Huang W
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3406-12. PubMed ID: 24512085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly selective and sensitive detection of coralyne based on the binding chemistry of aptamer and graphene oxide.
    Zhang P; Wang Y; Leng F; Xiong ZH; Huang CZ
    Talanta; 2013 Aug; 112():117-22. PubMed ID: 23708546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.