These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 31171175)
21. Doped zinc sulfide quantum dots based phosphorescence turn-off/on probe for detecting histidine in biological fluid. Bian W; Wang F; Wei Y; Wang L; Liu Q; Dong W; Shuang S; Choi MM Anal Chim Acta; 2015 Jan; 856():82-9. PubMed ID: 25542361 [TBL] [Abstract][Full Text] [Related]
22. Phosphorescence detection of L-ascorbic acid with surface-attached N-acetyl-L-cysteine and L-cysteine Mn doped ZnS quantum dots. Bian W; Ma J; Guo W; Lu D; Fan M; Wei Y; Li Y; Shuang S; Choi MM Talanta; 2013 Nov; 116():794-800. PubMed ID: 24148476 [TBL] [Abstract][Full Text] [Related]
23. Functional ZnS:Mn(II) quantum dot modified with L-cysteine and 6-mercaptonicotinic acid as a fluorometric probe for copper(II). Wang J; Yu J; Wang X; Wang L; Li B; Shen D; Kang Q; Chen L Mikrochim Acta; 2018 Aug; 185(9):420. PubMed ID: 30121782 [TBL] [Abstract][Full Text] [Related]
24. Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe. Rajabi HR; Shamsipur M; Khosravi AA; Khani O; Yousefi MH Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():256-62. PubMed ID: 23434552 [TBL] [Abstract][Full Text] [Related]
25. Synthesis and application of a surface ionic imprinting polymer on silica-coated Mn-doped ZnS quantum dots as a chemosensor for the selective quantification of inorganic arsenic in fish. Jinadasa KK; Peña-Vázquez E; Bermejo-Barrera P; Moreda-Piñeiro A Anal Bioanal Chem; 2020 Mar; 412(7):1663-1673. PubMed ID: 31993725 [TBL] [Abstract][Full Text] [Related]
26. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids. He Y; Wang HF; Yan XP Anal Chem; 2008 May; 80(10):3832-7. PubMed ID: 18407673 [TBL] [Abstract][Full Text] [Related]
27. Nucleation temperature-controlled synthesis and in vitro toxicity evaluation of L-cysteine-capped Mn:ZnS quantum dots for intracellular imaging. Pandey V; Pandey G; Tripathi VK; Yadav S; Mudiam MKR Luminescence; 2016 Mar; 31(2):341-347. PubMed ID: 26179189 [TBL] [Abstract][Full Text] [Related]
28. L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Diaz-Diestra D; Thapa B; Beltran-Huarac J; Weiner BR; Morell G Biosens Bioelectron; 2017 Jan; 87():693-700. PubMed ID: 27631684 [TBL] [Abstract][Full Text] [Related]
29. Magnetic nanoparticles and quantum dots co-loaded imprinted matrix for pentachlorophenol. Yang M; Han A; Duan J; Li Z; Lai Y; Zhan J J Hazard Mater; 2012 Oct; 237-238():63-70. PubMed ID: 22964389 [TBL] [Abstract][Full Text] [Related]
30. Rapid aqueous synthesis of CuInS/ZnS quantum dots as sensor probe for alkaline phosphatase detection and targeted imaging in cancer cells. Zhang F; He X; Ma P; Sun Y; Wang X; Song D Talanta; 2018 Nov; 189():411-417. PubMed ID: 30086940 [TBL] [Abstract][Full Text] [Related]
31. Near-infrared MnCuInS/ZnS@BSA and urchin-like Au nanoparticle as a novel donor-acceptor pair for enhanced FRET biosensing. Xing H; Wei T; Lin X; Dai Z Anal Chim Acta; 2018 Dec; 1042():71-78. PubMed ID: 30428990 [TBL] [Abstract][Full Text] [Related]
32. Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins. Wu P; Zhao T; Tian Y; Wu L; Hou X Chemistry; 2013 Jun; 19(23):7473-9. PubMed ID: 23576296 [TBL] [Abstract][Full Text] [Related]
34. Cu-Mn codoped ZnS quantum dots-based ratiometric fluorescent sensor for folic acid. Wang Y; Yang M; Ren Y; Fan J Anal Chim Acta; 2018 Dec; 1040():136-142. PubMed ID: 30327103 [TBL] [Abstract][Full Text] [Related]
35. Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs. Xu C; Zhou R; He W; Wu L; Wu P; Hou X Anal Chem; 2014 Apr; 86(7):3279-83. PubMed ID: 24592864 [TBL] [Abstract][Full Text] [Related]
36. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids. Wu P; He Y; Wang HF; Yan XP Anal Chem; 2010 Feb; 82(4):1427-33. PubMed ID: 20092317 [TBL] [Abstract][Full Text] [Related]
37. High-Efficiency Isolation and Rapid Identification of Heterogeneous Circulating Tumor Cells (CTCs) Using Dual-Antibody-Modified Fluorescent-Magnetic Nanoparticles. Wang Z; Sun N; Liu H; Chen C; Ding P; Yue X; Zou H; Xing C; Pei R ACS Appl Mater Interfaces; 2019 Oct; 11(43):39586-39593. PubMed ID: 31577122 [TBL] [Abstract][Full Text] [Related]
38. Folic acid-conjugated core/shell ZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells. Geszke M; Murias M; Balan L; Medjahdi G; Korczynski J; Moritz M; Lulek J; Schneider R Acta Biomater; 2011 Mar; 7(3):1327-38. PubMed ID: 20965282 [TBL] [Abstract][Full Text] [Related]
39. Self-assembly of manganese doped zinc sulfide quantum dots/CTAB nanohybrids for detection of rutin. Miao Y; Zhang Z; Gong Y; Zhang Q; Yan G Biosens Bioelectron; 2014 Feb; 52():271-6. PubMed ID: 24064476 [TBL] [Abstract][Full Text] [Related]
40. Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of raceanisodamine hydrochloride and atropine sulfate in biological fluids. Wu H; Fan Z Spectrochim Acta A Mol Biomol Spectrosc; 2012 May; 90():131-4. PubMed ID: 22336044 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]