These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3117125)

  • 1. Use of cell contour analysis to evaluate the affinity between macrophages and glutaraldehyde-treated erythrocytes.
    Mege JL; Capo C; Benoliel AM; Bongrand P
    Biophys J; 1987 Aug; 52(2):177-86. PubMed ID: 3117125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramembranous particle distribution in human erythrocytes: effects of lysis, glutaraldehyde, and poly-L-lysine.
    Pricam C; Fisher KA; Friend DS
    Anat Rec; 1977 Dec; 189(4):595-607. PubMed ID: 413458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of glutaraldehyde and osmium tetroxide on the erythrocyte membrane. A spin label study.
    Komorowska M; Koter M; Bartosz G; Gomułkiewicz J
    Biochim Biophys Acta; 1982 Mar; 686(1):94-8. PubMed ID: 6279155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas.
    Berk D; Evans E
    Biophys J; 1991 Apr; 59(4):861-72. PubMed ID: 2065190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fixation with even small quantities of glutaraldehyde affects red blood cell surface properties in a cell- and species-dependent manner. Studies by cell partitioning.
    Walter H; Krob EJ
    Biosci Rep; 1989 Dec; 9(6):727-35. PubMed ID: 2482090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of human complement by glutaraldehyde-treated red cells.
    Hughes-Jones NC; Gardner B; Rowlands J
    Nature; 1977 Dec; 270(5638):613-4. PubMed ID: 413056
    [No Abstract]   [Full Text] [Related]  

  • 7. Complement-induced modifications in membrane fluidity: studies with resealed and glutaraldehyde-treated erythrocyte membrane ghosts.
    Giavedoni EB; Mason RP; Dalmasso AP
    J Immunol; 1978 Jun; 120(6):2003-7. PubMed ID: 207778
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of glutaraldehyde and critical point drying on the shape and size of erythrocytes in isotonic and hypotonic media.
    Eskelinen S; Saukko P
    J Microsc; 1983 Apr; 130(Pt 1):63-71. PubMed ID: 6406673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-specific binding by macrophages: evaluation of the influence of medium-range electrostatic repulsion and short-range hydrophobic interaction.
    Capo C; Garrouste F; Benoliel AM; Bongrand P; Depieds R
    Immunol Commun; 1981; 10(1):35-43. PubMed ID: 6792056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-specific recognition in phagocytosis: ingestion of aldehyde-treated erythrocytes by rat peritoneal macrophages.
    Capo C; Bongrand P; Benoliel AM; Depieds R
    Immunology; 1979 Mar; 36(3):501-8. PubMed ID: 437841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially periodic discrete contact regions in polylysine-induced erythrocyte-yeast adhesion.
    Hewison LA; Coakley WT; Meyer HW
    Cell Biophys; 1988 Oct; 13(2):151-7. PubMed ID: 2464435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of triton x-100 and glutaraldehyde on Ca2+- and Mg2+-ATPase activity of erythrocytes during irradiation].
    Finashin AV; Krupin VD; Tovstiak VV
    Ukr Biokhim Zh (1978); 1997; 69(1):99-103. PubMed ID: 9454389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detachment of agglutinin-bonded red blood cells. II. Mechanical energies to separate large contact areas.
    Evans E; Berk D; Leung A; Mohandas N
    Biophys J; 1991 Apr; 59(4):849-60. PubMed ID: 2065189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutaraldehyde-treated xenocells: a specific adsorbent for complement factors.
    Schmer G; Newman ML; Rastelli L; Dennis MB
    Trans Am Soc Artif Intern Organs; 1981; 27():445-8. PubMed ID: 6800100
    [No Abstract]   [Full Text] [Related]  

  • 15. Differential effects of glutaraldehyde treatment of target cells on lectin-dependent macrophage-mediated tumor lysis.
    Iwata-Dohi N; Esumi-Kurisu M; Mizuno D; Yamazaki M
    J Reticuloendothel Soc; 1983 Mar; 33(3):239-46. PubMed ID: 6403708
    [No Abstract]   [Full Text] [Related]  

  • 16. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells.
    Evans EA
    Biophys J; 1980 May; 30(2):265-84. PubMed ID: 7260275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis of flexion energy variations of a human red blood cell, of ellipsoid form, in the process of deformation imposed by turbulent tangential flux].
    Martino R; Negri M; Bettini V; Sinopoli A; Di Marco A
    Boll Soc Ital Biol Sper; 1979 Aug; 55(16):1566-71. PubMed ID: 121961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of glutaraldehyde treatment on enzyme-loaded erythrocytes.
    Deloach J; Peters S; Pinkard O; Glew R; Ihler G
    Biochim Biophys Acta; 1977 Feb; 496(2):507-15. PubMed ID: 402162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of digitonin and glutaraldehyde on the preservation of erythrocyte membrane structures.
    Meyer HW
    Acta Histochem Suppl; 1981; 23():195-204. PubMed ID: 6784165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of antibodies to membrane skeletal proteins on the shape of erythrocytes and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes.
    Pestonjamasp KN; Mehta NG
    Exp Cell Res; 1995 Jul; 219(1):74-81. PubMed ID: 7628552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.