These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31171377)

  • 1. Antimicrobial Inks: The Anti-Infective Applications of Bioprinted Bacterial Polysaccharides.
    McCarthy RR; Ullah MW; Pei E; Yang G
    Trends Biotechnol; 2019 Nov; 37(11):1155-1159. PubMed ID: 31171377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of bacterial polysaccharides in bioprinting.
    McCarthy RR; Ullah MW; Booth P; Pei E; Yang G
    Biotechnol Adv; 2019 Dec; 37(8):107448. PubMed ID: 31513840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs.
    Muthukrishnan L
    Carbohydr Polym; 2021 May; 260():117774. PubMed ID: 33712131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices.
    Chinga-Carrasco G
    Biomacromolecules; 2018 Mar; 19(3):701-711. PubMed ID: 29489338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting.
    Lee M; Bae K; Levinson C; Zenobi-Wong M
    Biofabrication; 2020 Mar; 12(2):025025. PubMed ID: 32078578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of mature bacterial biofilms for antimicrobial resistance drug testing.
    Ning E; Turnbull G; Clarke J; Picard F; Riches P; Vendrell M; Graham D; Wark AW; Faulds K; Shu W
    Biofabrication; 2019 Sep; 11(4):045018. PubMed ID: 31370051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Bioprinting of Self-Standing Silk-Based Bioink.
    Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL
    Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting.
    Compaan AM; Song K; Huang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5714-5726. PubMed ID: 30644714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities.
    Salaris F; Rosa A
    Brain Res; 2019 Nov; 1723():146393. PubMed ID: 31425681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW
    Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector.
    Zhou W; Qiao Z; Nazarzadeh Zare E; Huang J; Zheng X; Sun X; Shao M; Wang H; Wang X; Chen D; Zheng J; Fang S; Li YM; Zhang X; Yang L; Makvandi P; Wu A
    J Med Chem; 2020 Aug; 63(15):8003-8024. PubMed ID: 32255358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoengineered Colloidal Inks for 3D Bioprinting.
    Peak CW; Stein J; Gold KA; Gaharwar AK
    Langmuir; 2018 Jan; 34(3):917-925. PubMed ID: 28981287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks.
    Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F
    Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.
    Lee JM; Yeong WY
    Adv Healthc Mater; 2016 Nov; 5(22):2856-2865. PubMed ID: 27767258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of 3D Printing Techniques and the Future in Biofabrication of Bioprinted Tissue.
    Patra S; Young V
    Cell Biochem Biophys; 2016 Jun; 74(2):93-8. PubMed ID: 27193609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering.
    Duan B
    Ann Biomed Eng; 2017 Jan; 45(1):195-209. PubMed ID: 27066785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.