BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31171577)

  • 1. Anterior cleft palate due to Cbfb deficiency and its rescue by folic acid.
    Sarper SE; Inubushi T; Kurosaka H; Ono Minagi H; Murata Y; Kuremoto KI; Sakai T; Taniuchi I; Yamashiro T
    Dis Model Mech; 2019 Jun; 12(6):. PubMed ID: 31171577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Runx1-Stat3-Tgfb3 signaling network regulating the anterior palatal development.
    Sarper SE; Kurosaka H; Inubushi T; Ono Minagi H; Kuremoto KI; Sakai T; Taniuchi I; Yamashiro T
    Sci Rep; 2018 Jul; 8(1):11208. PubMed ID: 30046048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tgfb1 expressed in the Tgfb3 locus partially rescues the cleft palate phenotype of Tgfb3 null mutants.
    Yang LT; Kaartinen V
    Dev Biol; 2007 Dec; 312(1):384-95. PubMed ID: 17967447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development.
    Lane J; Yumoto K; Azhar M; Ninomiya-Tsuji J; Inagaki M; Hu Y; Deng CX; Kim J; Mishina Y; Kaartinen V
    Dev Biol; 2015 Feb; 398(2):231-41. PubMed ID: 25523394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y
    Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of BMP signaling by Noggin is required for the maintenance of palatal epithelial integrity during palatogenesis.
    He F; Xiong W; Wang Y; Matsui M; Yu X; Chai Y; Klingensmith J; Chen Y
    Dev Biol; 2010 Nov; 347(1):109-21. PubMed ID: 20727875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of cleft-palate and alteration of Tgf-β(3) expression and the mechanisms leading to palatal fusion in mice following dietary folic-acid deficiency.
    Maldonado E; Murillo J; Barrio C; del Río A; Pérez-Miguelsanz J; López-Gordillo Y; Partearroyo T; Paradas I; Maestro C; Martínez-Sanz E; Varela-Moreiras G; Martínez-Álvarez C
    Cells Tissues Organs; 2011; 194(5):406-20. PubMed ID: 21293104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Association Between Runx Signaling and Craniofacial Development and Disease.
    Yamashiro T; Kurosaka H; Inubush T
    Curr Osteoporos Rep; 2022 Feb; 20(1):120-126. PubMed ID: 34931296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis.
    Zhang Z; Song Y; Zhao X; Zhang X; Fermin C; Chen Y
    Development; 2002 Sep; 129(17):4135-46. PubMed ID: 12163415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of JAK2/STAT3 signaling in fusion of the secondary palate.
    Yoshida N; Inubushi T; Hirose T; Aoyama G; Kurosaka H; Yamashiro T
    Dis Model Mech; 2023 Oct; 16(10):. PubMed ID: 37846594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycoprotein A repetitions predominant (GARP) positively regulates transforming growth factor (TGF) β3 and is essential for mouse palatogenesis.
    Wu BX; Li A; Lei L; Kaneko S; Wallace C; Li X; Li Z
    J Biol Chem; 2017 Nov; 292(44):18091-18097. PubMed ID: 28912269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF beta genes are differentially expressed in sequential stages of human palatal shelf fusion.
    Britto JA; Evans RD; Hayward RD; Jones BM
    Cleft Palate Craniofac J; 2002 May; 39(3):332-40. PubMed ID: 12019011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional role of transforming growth factor-beta type III receptor during palatal fusion.
    Nakajima A; Ito Y; Asano M; Maeno M; Iwata K; Mitsui N; Shimizu N; Cui XM; Shuler CF
    Dev Dyn; 2007 Mar; 236(3):791-801. PubMed ID: 17295310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate.
    Cui XM; Shiomi N; Chen J; Saito T; Yamamoto T; Ito Y; Bringas P; Chai Y; Shuler CF
    Dev Biol; 2005 Feb; 278(1):193-202. PubMed ID: 15649471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice.
    Alappat SR; Zhang Z; Suzuki K; Zhang X; Liu H; Jiang R; Yamada G; Chen Y
    Dev Biol; 2005 Jan; 277(1):102-13. PubMed ID: 15572143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ablation of the Sox11 Gene Results in Clefting of the Secondary Palate Resembling the Pierre Robin Sequence.
    Huang H; Yang X; Bao M; Cao H; Miao X; Zhang X; Gan L; Qiu M; Zhang Z
    J Biol Chem; 2016 Mar; 291(13):7107-18. PubMed ID: 26826126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway.
    Dudas M; Nagy A; Laping NJ; Moustakas A; Kaartinen V
    Dev Biol; 2004 Feb; 266(1):96-108. PubMed ID: 14729481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide mRNA-Seq Profiling Reveals that LEF1 and SMAD3 Regulate Epithelial-Mesenchymal Transition Through the Hippo Signaling Pathway During Palatal Fusion.
    Shu X; Shu S; Cheng H
    Genet Test Mol Biomarkers; 2019 Mar; 23(3):197-203. PubMed ID: 30767676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odd-skipped related 2 (Osr2) encodes a key intrinsic regulator of secondary palate growth and morphogenesis.
    Lan Y; Ovitt CE; Cho ES; Maltby KM; Wang Q; Jiang R
    Development; 2004 Jul; 131(13):3207-16. PubMed ID: 15175245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves.
    Wu W; Gu S; Sun C; He W; Xie X; Li X; Ye W; Qin C; Chen Y; Xiao J; Liu C
    PLoS One; 2015; 10(9):e0136951. PubMed ID: 26332583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.